Relative singularity categories and singular equivalences

被引:0
作者
Hafezi, Rasool [1 ,2 ]
机构
[1] Univ Isfahan, Dept Pure Math, Fac Math & Stat, Esfahan 8174673441, Iran
[2] Nanjing Univ Informat Sci & Technol, Sch Math & Stat, Nanjing 210044, Peoples R China
关键词
Singularity category; Singular equivalence; Stable category; STABLE EQUIVALENCES; MORITA TYPE; ALGEBRAS; REPRESENTATIONS; CONSTRUCTIONS; COMPLEXES; MUTATION;
D O I
10.1007/s40062-021-00289-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let R be a right noetherian ring. We introduce the concept of relative singularity category Delta chi(R) of R with respect to a contravariantly finite subcategory chi of mod- R. Along with some finiteness conditions on chi, we prove that Delta chi(R) is triangle equivalent to a subcategory of the homotopy category K-ac(chi) of exact complexes over chi. As an application, a new description of the classical singularity category D-sg(R) is given. The relative singularity categories are applied to lift a stable equivalence between two suitable subcategories of the module categories of two given right noetherian rings to get a singular equivalence between the rings. In different types of rings, including path rings, triangular matrix rings, trivial extension rings and tensor rings, we provide some consequences for their singularity categories.
引用
收藏
页码:487 / 516
页数:30
相关论文
共 40 条
[1]   Silting mutation in triangulated categories [J].
Aihara, Takuma ;
Iyama, Osamu .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2012, 85 :633-668
[2]   The derived equivalence classification of representation-finite selfinjective algebras [J].
Asashiba, H .
JOURNAL OF ALGEBRA, 1999, 214 (01) :182-221
[3]  
AUSLANDER M, 1986, LECT NOTES MATH, V1178, P194
[4]  
Auslander M., 1971, QUEEN MARY COLL NOTE
[5]  
Auslander M., 1973, Lecture Notes in Mathematics, V353, P8
[6]  
Auslander M., 1995, CAMBRIDGE STUDIES AD, V36
[7]   The homological theory of contravariantly finite subcategories: Auslander-Buchweitz contexts, Gorenstein categories and (CO-)stabilization [J].
Beligiannis, A .
COMMUNICATIONS IN ALGEBRA, 2000, 28 (10) :4547-4596
[8]  
Beligiannis A, 2007, MEM AM MATH SOC, V188, P1
[9]  
Buchweitz R.O., 1987, Maximal Cohen-Macaulay modules and Tate cohomology over Gorenstein rings
[10]  
Chen X.W., 2010, GORENSTEIN HOMOLOGIC