On the Lp Monge - Ampere equation

被引:73
作者
Chen, Shibing [1 ]
Li, Qi-rui [1 ]
Zhu, Guangxian [2 ]
机构
[1] Australian Natl Univ, Math Sci Inst, Canberra, ACT 2601, Australia
[2] NYU, Tandon Sch Engn, Dept Math, 6 Metrotech, Brooklyn, NY 11201 USA
关键词
Monge Ampere type equation; L-p surface area measure; L-p Minkowski problem; CHRISTOFFEL-MINKOWSKI PROBLEM; SURFACE MEASURE; CLASSIFICATION; REGULARITY; UNIQUENESS; GEOMETRY; SPHERE;
D O I
10.1016/j.jde.2017.06.007
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For the case where 0 < p < 1, we prove the existence of solutions of the L-p Monge Ampere equation for arbitrary measures and show that the solution is in general not unique. (C) 2017 Elsevier Inc. All rights reserved.
引用
收藏
页码:4997 / 5011
页数:15
相关论文
共 64 条
[1]  
Alexandroff A, 1942, CR ACAD SCI URSS, V35, P131
[2]  
Andrews B, 2003, J AM MATH SOC, V16, P443
[3]   Gauss curvature flow: the fate of the rolling stones [J].
Andrews, B .
INVENTIONES MATHEMATICAE, 1999, 138 (01) :151-161
[4]   A probabilistic approach to the geometry of the lnp-ball [J].
Barthe, F ;
Guédon, O ;
Mendelson, S ;
Naor, A .
ANNALS OF PROBABILITY, 2005, 33 (02) :480-513
[5]   Cone-volume measure of general centered convex bodies [J].
Boeroeczky, Karoly J. ;
Henk, Martin .
ADVANCES IN MATHEMATICS, 2016, 286 :703-721
[6]  
Böröczky KJ, 2013, J AM MATH SOC, V26, P831
[7]   The log-Brunn-Minkowski inequality [J].
Boeroeczky, Karoly J. ;
Lutwak, Erwin ;
Yang, Deane ;
Zhang, Gaoyong .
ADVANCES IN MATHEMATICS, 2012, 231 (3-4) :1974-1997
[8]  
Boroczky K. J., PLANAR LP MINKOWSKI
[9]  
Boroczky K. J., DUAL MINKOWSKI PROBL
[10]   On the Discrete Logarithmic Minkowski Problem [J].
Boroczky, Karoly J. ;
Hegedus, Pal ;
Zhu, Guangxian .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2016, 2016 (06) :1807-1838