Modeling Soil Water Content and Crop-Growth Metrics in a Wheat Field in the North China Plain Using RZWQM2

被引:3
|
作者
Du, Kun [1 ,2 ,3 ]
Qiao, Yunfeng [1 ,2 ,3 ]
Zhang, Qiuying [4 ]
Li, Fadong [1 ,2 ,3 ]
Li, Qi [4 ]
Liu, Shanbao [1 ,2 ,3 ]
Tian, Chao [1 ,2 ,3 ]
机构
[1] Chinese Acad Sci, Inst Geog Sci & Nat Resources Res, Key Lab Ecosyst Network Observat & Modeling, Beijing 100101, Peoples R China
[2] Minist Sci & Technol, Shandong Yucheng Agroecosyst Natl Observat & Res, Yucheng 251200, Peoples R China
[3] Univ Chinese Acad Sci, Coll Resource & Environm, Beijing 100049, Peoples R China
[4] Chinese Res Inst Environm Sci, Beijing 100012, Peoples R China
来源
AGRONOMY-BASEL | 2021年 / 11卷 / 06期
基金
中国国家自然科学基金;
关键词
soil water content; yield; winter wheat; RZWQM2; North China Plain; QUALITY MODEL; SUMMER MAIZE; NO-TILLAGE; TEMPORAL STABILITY; DATA ASSIMILATION; MANAGEMENT; NITROGEN; SYSTEM; RESPIRATION; UNCERTAINTY;
D O I
10.3390/agronomy11061245
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
Soil water content (SWC) is an important factor restricting crop growth and yield in cropland ecosystems. The observation and simulation of soil moisture contribute greatly to improving water-use efficiency and crop yield. This study was conducted at the Shandong Yucheng Agro-ecosystem National Observation and Research Station in the North China Plain. The study period was across the winter wheat (Triticum aestivum L.) growth stages from 2017 to 2019. A cosmic-ray neutron probe was used to monitor the continuous daily SWC. Furthermore, the crop leaf area index (LAI), yield, and aboveground biomass of winter wheat were determined. The root zone quality model 2 (RZWQM2) was used to simulate and validate the SWC, crop LAI, yield, and aboveground biomass. The results showed that the simulation errors of SWC were minute across the wheat growth stages and mature stages in 2017-2019. The root mean square error (RMSE) and relative root mean square error (RRMSE) of the SWC simulation at the jointing stage of winter wheat were 0.0296 and 0.1605 in 2017-2018, and 0.0265 and 0.1480 in 2018-2019, respectively. During the rain-affected days, the RMSE (0.0253) and RRMSE (0.0980) for 2017-2018 were significantly lower than those of 2018-2019 (0.0301 and 0.1458, respectively), indicating that rain events decreased the model accuracy in the dry years compared to the wet years. The simulated LAIs were significantly higher than the measured values. The simulated yield value of winter wheat was 5.61% lower and 3.92% higher than the measured yield in 2017-2018 and in 2018-2019, respectively. The simulated value of aboveground biomass was significantly (45.48%) lower than the measured value in 2017-2018. This study showed that, compared with the dry and cold wheat growth period of 2018-2019, the higher precipitation and temperature in 2017-2018 led to a poorer simulation of SWC and crop-growth components. This study indicated that annual abnormal rainfall and temperature had a significant influence on the simulation of SWC and wheat growth, especially under intensive climate-change stress conditions.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] An evaluation of the crop-growth simulation submodel of EPIC for wheat grown in a Mediterranean climate with variable soil-water regimes
    Steduto, P
    Pocuca, V
    Caliandro, A
    Debaeke, P
    EUROPEAN JOURNAL OF AGRONOMY, 1995, 4 (03) : 335 - 345
  • [22] Improving Water Use Efficiency of Wheat Crop Varieties in the North China Plain: Review and Analysis
    MEI Xu-rong
    ZHONG Xiu-li
    Vadez Vincent
    LIU Xiao-ying
    Journal of Integrative Agriculture, 2013, 12 (07) : 1243 - 1250
  • [23] Improving Water Use Efficiency of Wheat Crop Varieties in the North China Plain: Review and Analysis
    Mei Xu-rong
    Zhong Xiu-li
    Vincent, Vadez
    Liu Xiao-ying
    JOURNAL OF INTEGRATIVE AGRICULTURE, 2013, 12 (07) : 1243 - 1250
  • [24] Impact of the changing area sown to winter wheat on crop water footprint in the North China Plain
    Wang, Xue
    Li, Xiubin
    Fischer, Guenther
    Sun, Laixiang
    Tan, Minghong
    Xin, Liangjie
    Liang, Zhuoran
    ECOLOGICAL INDICATORS, 2015, 57 : 100 - 109
  • [25] Modeling crop growth and land surface energy fluxes in wheat-maize double cropping system in the North China Plain
    Liu, Fengshan
    Chen Ying
    Xiao Dengpan
    Bai Huizi
    Tao Fulu
    Ge Quansheng
    THEORETICAL AND APPLIED CLIMATOLOGY, 2020, 142 (3-4) : 959 - 970
  • [26] Responses of soil properties, root growth and crop yield to tillage and crop residue management in a wheat-maize cropping system on the North China Plain
    Mu, Xinyuan
    Zhao, Yali
    Liu, Kui
    Ji, Baoyi
    Guo, Haibin
    Xue, Zhiwei
    Li, Chaohai
    EUROPEAN JOURNAL OF AGRONOMY, 2016, 78 : 32 - 43
  • [27] Effect of soil water deficit on evapotranspiration, crop yield, and water use efficiency in the North China Plain
    Zhang, YQ
    Kendy, E
    Yu, Q
    Liu, CM
    Shen, YJ
    Sun, HY
    AGRICULTURAL WATER MANAGEMENT, 2004, 64 (02) : 107 - 122
  • [28] Soil Moisture and Crop Evapotranspiration Forecast for Winter Wheat Based on Weather Information in North China Plain
    Liu, Zhandong
    Qin, Anzhen
    Duan, Aiwang
    Zhang, Jiyang
    Sun, Jingsheng
    Ning, Dongfeng
    Zhao, Ben
    Mi, Zhaorong
    Liu, Zugui
    PROCEEDINGS OF THE 2017 2ND INTERNATIONAL CONFERENCE ON MODELLING, SIMULATION AND APPLIED MATHEMATICS (MSAM2017), 2017, 132 : 295 - 299
  • [29] Estimation of soil water content and evapotranspiration from irrigated cropland on the North China Plain
    Jiang, Jie
    Zhang, Yongqiang
    Wegehenkel, Martin
    Yu, Qiang
    Xia, Jun
    JOURNAL OF PLANT NUTRITION AND SOIL SCIENCE, 2008, 171 (05) : 751 - 761
  • [30] Physiological Characteristics, Crop Growth and Grain Yield of Twelve Wheat Varieties Cultivated in the North China Plain
    Tang, Xiaopei
    Liu, Haijun
    Zhang, Wenjie
    AGRONOMY-BASEL, 2023, 13 (12):