An inverse eigenvalue problem and an associated approximation problem for generalized K-centrohermitian matrices

被引:9
|
作者
Liu, Zhongyun [1 ]
Fassbender, Heike
机构
[1] Changsha Univ Sci & Technol, Sch Math & Comp Sci, Changsha 410076, Peoples R China
[2] Tech Univ Carolo Wilhelmina Braunschweig, Inst Computat Math, D-38023 Braunschweig, Germany
关键词
generalized K-centrohermitian matrix; inverse eigenvalue problem; approximation problem;
D O I
10.1016/j.cam.2006.08.014
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A partially described inverse eigenvalue problem and an associated optimal approximation problem for generalized K-centrohermitian matrices are considered. It is shown under which conditions the inverse eigenproblem has a solution. An expression of its general solution is given. In case a solution of the inverse eigenproblem exists, the optimal approximation problem can be solved. The formula of its unique solution is given. (c) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:578 / 585
页数:8
相关论文
共 50 条
  • [41] Isospectral flows and the inverse eigenvalue problem for Toeplitz matrices
    Diele, F
    Sgura, I
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1999, 110 (01) : 25 - 43
  • [42] An inverse eigenvalue problem for pseudo-Jacobi matrices
    Xu, Wei-Ru
    Bebiano, Natalia
    Chen, Guo-Liang
    APPLIED MATHEMATICS AND COMPUTATION, 2019, 346 : 423 - 435
  • [43] A kind of inverse eigenvalue problem for symmetric arrowhead matrices
    Peng, Juan
    Hu, Xiyan
    Zhang, Lei
    Advances in Matrix Theory and Applications, 2006, : 158 - 160
  • [44] Inverse Generalized Eigenvalue Problem for Principal Square Submatrix
    Li, Zhibin
    Chang, Jing
    2010 SECOND ETP/IITA WORLD CONGRESS IN APPLIED COMPUTING, COMPUTER SCIENCE, AND COMPUTER ENGINEERING, 2010, : 298 - 301
  • [46] A note on the inverse eigenvalue problem for symmetric doubly stochastic matrices
    Fang, Maozhong
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2010, 432 (11) : 2925 - 2927
  • [47] AN IMPROVED ALGORITHM FOR SOLVING AN INVERSE EIGENVALUE PROBLEM FOR BAND MATRICES
    Akaiwa, Kanae
    Yoshida, Akira
    Kondo, Koichi
    ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2022, 38 : 745 - 759
  • [48] Extremal inverse eigenvalue problem for symmetric doubly arrow matrices
    Liu Z.
    Wang K.
    Xu C.
    Journal of Applied Mathematics and Computing, 2014, 45 (1-2) : 151 - 164
  • [49] The inverse eigenvalue problem for Hermitian matrices whose graphs are cycles
    Fernandes, Rosario
    da Fonseca, C. M.
    LINEAR & MULTILINEAR ALGEBRA, 2009, 57 (07) : 673 - 682
  • [50] An inverse eigenvalue problem for structured matrices determined by graph pairs
    Berliner, A. H.
    Catral, M.
    Cavers, M.
    Kim, S.
    van den Driessche, P.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2024, 699 : 586 - 603