Hamiltonian Operator Approximation for Energy Measurement and Ground-State Preparation

被引:22
作者
Bespalova, Tatiana A. [1 ]
Kyriienko, Oleksandr [2 ]
机构
[1] ITMO Univ, St Petersburg 197101, Russia
[2] Univ Exeter, Dept Phys & Astron, Stocker Rd, Exeter EX4 4QL, Devon, England
来源
PRX QUANTUM | 2021年 / 2卷 / 03期
关键词
VARIATIONAL QUANTUM EIGENSOLVER; COMPUTATION; ENTANGLEMENT; SIMULATION; ALGORITHM;
D O I
10.1103/PRXQuantum.2.030318
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The Hamiltonian operator plays a central role in quantum theory being a generator of unitary quantum dynamics. Its expectation value describes the energy of a quantum system. Typically being a nonunitary operator, the action of the Hamiltonian is either encoded using complex ancilla-based circuits, or implemented effectively as a sum of Pauli string terms. Here, we show how to approximate the Hamiltonian operator as a sum of propagators using a differential representation. The proposed approach, named the Hamiltonian operator approximation (HOA), is designed to benefit analog quantum simulators, where one has direct access to simulation of quantum dynamics, but measuring separate circuits is not possible. We describe how to use this strategy in the hybrid quantum-classical workflow for performing energy measurements. Benchmarking the measurement scheme, we discuss the relevance of the discretization step size, stencil order, number of shots, and noise. We also use HOA to prepare ground states of complex material science models with direct iteration and quantum filter diagonalization, finding the lowest energy for the 12-qubit Hamiltonian of hydrogen chain H-6 with 10(-5) Hartree precision using 11 time-evolved reference states. The approach is compared to the variational quantum eigensolver, proving that HOA is beneficial for systems at increasing size, corresponding to noisy large-scale quantum devices. We find that, for the Heisenberg model with 12 or more spins, our approach may outperform variational methods, both in terms of the gate depth and the total number of measurements.
引用
收藏
页数:14
相关论文
共 105 条
  • [1] Quantum algorithm providing exponential speed increase for finding eigenvalues and eigenvectors
    Abrams, DS
    Lloyd, S
    [J]. PHYSICAL REVIEW LETTERS, 1999, 83 (24) : 5162 - 5165
  • [2] Reachability Deficits in Quantum Approximate Optimization
    Akshay, V
    Philathong, H.
    Morales, M. E. S.
    Biamonte, J. D.
    [J]. PHYSICAL REVIEW LETTERS, 2020, 124 (09)
  • [3] Quantum supremacy using a programmable superconducting processor
    Arute, Frank
    Arya, Kunal
    Babbush, Ryan
    Bacon, Dave
    Bardin, Joseph C.
    Barends, Rami
    Biswas, Rupak
    Boixo, Sergio
    Brandao, Fernando G. S. L.
    Buell, David A.
    Burkett, Brian
    Chen, Yu
    Chen, Zijun
    Chiaro, Ben
    Collins, Roberto
    Courtney, William
    Dunsworth, Andrew
    Farhi, Edward
    Foxen, Brooks
    Fowler, Austin
    Gidney, Craig
    Giustina, Marissa
    Graff, Rob
    Guerin, Keith
    Habegger, Steve
    Harrigan, Matthew P.
    Hartmann, Michael J.
    Ho, Alan
    Hoffmann, Markus
    Huang, Trent
    Humble, Travis S.
    Isakov, Sergei V.
    Jeffrey, Evan
    Jiang, Zhang
    Kafri, Dvir
    Kechedzhi, Kostyantyn
    Kelly, Julian
    Klimov, Paul V.
    Knysh, Sergey
    Korotkov, Alexander
    Kostritsa, Fedor
    Landhuis, David
    Lindmark, Mike
    Lucero, Erik
    Lyakh, Dmitry
    Mandra, Salvatore
    McClean, Jarrod R.
    McEwen, Matthew
    Megrant, Anthony
    Mi, Xiao
    [J]. NATURE, 2019, 574 (7779) : 505 - +
  • [4] Simulated quantum computation of molecular energies
    Aspuru-Guzik, A
    Dutoi, AD
    Love, PJ
    Head-Gordon, M
    [J]. SCIENCE, 2005, 309 (5741) : 1704 - 1707
  • [5] A cold-atom Fermi-Hubbard antiferromagnet
    Azurenko, Anton M.
    Chiu, Christie S.
    Ji, Geoffrey
    Parsons, Maxwell F.
    Kanasz-Nagy, Marton
    Schmidt, Richard
    Grusdt, Fabian
    Demler, Eugene
    Greif, Daniel
    Greiner, Markus
    [J]. NATURE, 2017, 545 (7655) : 462 - +
  • [6] GRID METHODS FOR SOLVING THE SCHRODINGER-EQUATION AND TIME-DEPENDENT QUANTUM DYNAMICS OF MOLECULAR PHOTOFRAGMENTATION AND REACTIVE SCATTERING PROCESSES
    BALINTKURTI, GG
    DIXON, RN
    MARSTON, CC
    [J]. INTERNATIONAL REVIEWS IN PHYSICAL CHEMISTRY, 1992, 11 (02) : 317 - 344
  • [7] Parameterized quantum circuits as machine learning models
    Benedetti, Marcello
    Lloyd, Erika
    Sack, Stefan
    Fiorentini, Mattia
    [J]. QUANTUM SCIENCE AND TECHNOLOGY, 2019, 4 (04)
  • [8] Simulating Hamiltonian Dynamics with a Truncated Taylor Series
    Berry, Dominic W.
    Childs, Andrew M.
    Cleve, Richard
    Kothari, Robin
    Somma, Rolando D.
    [J]. PHYSICAL REVIEW LETTERS, 2015, 114 (09)
  • [9] Bharti K., ARXIV210108448 ARXIV210108448
  • [10] Bloch I, 2012, NAT PHYS, V8, P267, DOI [10.1038/NPHYS2259, 10.1038/nphys2259]