Hydrothermal synthesis and tribological properties of FeS2 (pyrite)/reduced graphene oxide heterojunction

被引:40
作者
Zhang, Mingsuo [1 ]
Chen, Beibei [1 ]
Tang, Hua [1 ]
Tang, Guogang [1 ]
Li, Changsheng [1 ]
Chen, Lin [1 ]
Zhang, Hongmei [1 ]
Zhang, Qing [1 ]
机构
[1] Jiangsu Univ, Sch Mat Sci & Engn, Key Lab High End Struct Mat Jiangsu Prov, Zhenjiang 212013, Jiangsu, Peoples R China
关键词
NANOCOMPOSITE; NANOPARTICLES; PERFORMANCE; COMPOSITES; PYRITE; SUPERCAPACITOR; NANOCRYSTALS; ADDITIVES; BATTERIES; MECHANISM;
D O I
10.1039/c4ra09261a
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
An FeS2 (pyrite)/reduced graphene oxide (FeS2/RGO) heterojunction was synthesized by a facile and effective hydrothermal method. X-ray diffraction proved the high purity of the as-prepared product, and both scanning electron microscopy and transmission electron microscopy showed that FeS2 particles were well distributed on RGO nanosheets with controlled size and morphology. The performance of the FeS2/RGO composites as lubricating oil additive were investigated on a ball-plate tribotester. The results indicated that FeS2/RGO could improve the load-carrying capacity dramatically, as well as the friction-reduction and anti-wear properties of the paraffin oil. In addition, higher GO content is beneficial to improve the lubrication properties of FeS2/RGO composites. The excellent lubrication performance of FeS2/RGO composites can be attributed to the unique layered structure of FeS2 and RGO.
引用
收藏
页码:1417 / 1423
页数:7
相关论文
共 40 条
[1]   Building blocks for integrated graphene circuits [J].
Areshkin, Denis A. ;
White, Carter T. .
NANO LETTERS, 2007, 7 (11) :3253-3259
[2]   Electronic confinement and coherence in patterned epitaxial graphene [J].
Berger, Claire ;
Song, Zhimin ;
Li, Xuebin ;
Wu, Xiaosong ;
Brown, Nate ;
Naud, Cecile ;
Mayou, Didier ;
Li, Tianbo ;
Hass, Joanna ;
Marchenkov, Atexei N. ;
Conrad, Edward H. ;
First, Phillip N. ;
de Heer, Wait A. .
SCIENCE, 2006, 312 (5777) :1191-1196
[3]   Synthesis and Properties of Semiconducting Iron Pyrite (FeS2) Nanowires [J].
Caban-Acevedo, Miguel ;
Faber, Matthew S. ;
Tan, Yizheng ;
Hamers, Robert J. ;
Jin, Song .
NANO LETTERS, 2012, 12 (04) :1977-1982
[4]   L-Cysteine-Assisted Synthesis of Layered MoS2/Graphene Composites with Excellent Electrochemical Performances for Lithium Ion Batteries [J].
Chang, Kun ;
Chen, Weixiang .
ACS NANO, 2011, 5 (06) :4720-4728
[5]   Self-Assembled Free-Standing Graphite Oxide Membrane [J].
Chen, Chengmeng ;
Yang, Quan-Hong ;
Yang, Yonggang ;
Lv, Wei ;
Wen, Yuefang ;
Hou, Peng-Xiang ;
Wang, Maozhang ;
Cheng, Hui-Ming .
ADVANCED MATERIALS, 2009, 21 (29) :3007-3011
[6]   Mechanism of action of colloidal solid dispersions [J].
Chiñas-Castillo, F ;
Spikes, HA .
JOURNAL OF TRIBOLOGY-TRANSACTIONS OF THE ASME, 2003, 125 (03) :552-557
[7]   Hydrothermal preparation and electrochemical sensing properties of TiO2-graphene nanocomposite [J].
Fan, Yang ;
Lu, Hai-Ting ;
Liu, Jin-Hang ;
Yang, Chun-Peng ;
Jing, Qiang-Shan ;
Zhang, Yu-Xia ;
Yang, Xing-Kun ;
Huang, Ke-Jing .
COLLOIDS AND SURFACES B-BIOINTERFACES, 2011, 83 (01) :78-82
[8]   Hydrothermal synthesis of FeS2 for lithium batteries [J].
Feng, Xu ;
He, Xiangming ;
Pu, Weihua ;
Jiang, Changyin ;
Wan, Chunrong .
IONICS, 2007, 13 (05) :375-377
[9]   A chemical route to graphene for device applications [J].
Gilje, Scott ;
Han, Song ;
Wang, Minsheng ;
Wang, Kang L. ;
Kaner, Richard B. .
NANO LETTERS, 2007, 7 (11) :3394-3398
[10]   In situ imaging of shearing contacts in the surface forces apparatus [J].
Golan, Y ;
Drummond, C ;
Israelachvili, J ;
Tenne, R .
WEAR, 2000, 245 (1-2) :190-195