Blow-up of solutions to parabolic equations with nonstandard growth conditions

被引:111
作者
Antontsev, S. [1 ]
Shmarev, S. [2 ]
机构
[1] Univ Lisbon, CMAF, P-1699 Lisbon, Portugal
[2] Univ Oviedo, Dept Matemat, Oviedo, Spain
关键词
Nonlinear parabolic PDE; Evolution p(x)-Laplace; Nonstandard growth; Blow-up;
D O I
10.1016/j.cam.2010.01.026
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the phenomenon of finite time blow-up in solutions of the homogeneous Dirichlet problem for the parabolic equation u(t) = div (a(x, t)vertical bar del u vertical bar(p(x)-2)del u) + b(x, t)vertical bar u vertical bar(sigma(x, t)-2)u with variable exponents of nonlinearity p(x), sigma(x, t) is an element of (1, infinity). Two different cases are studied. In the case of semilinear equation with p(x) congruent to 2, a(x, t) equivalent to 1, b(x. t) >= b(-) > 0 we show that the finite time blow-up happens if the initial function is sufficiently large and either min(Omega) sigma(x, t) = sigma(-)(t) > 2 for all t > 0, or sigma(-)(t) >= 2, sigma(-)(t) SE arrow 2 as t -> infinity and integral(infinity)(1) e(s(2-sigma-(s))) ds < infinity. In the case of the evolution p(x)-Laplace equation with the exponents p(x), sigma(x) independent of t, we prove that every solution corresponding to a sufficiently large initial function exhibits a finite time blow-up if b(x, t) >= b(-) > 0, a(t) (x, t) <= 0, b(t)(x, t) >= 0, min sigma(x) > 2 and max p(x) <= min sigma(x). (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:2633 / 2645
页数:13
相关论文
共 33 条
  • [1] New diffusion models in image processing
    Aboulaich, R.
    Meskine, D.
    Souissi, A.
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2008, 56 (04) : 874 - 882
  • [2] Regularity results for parabolic systems related to a class of non-Newtonian fluids
    Acerbi, E
    Mingione, G
    Seregin, GA
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2004, 21 (01): : 25 - 60
  • [3] Regularity results for stationary electro-rheological fluids
    Acerbi, E
    Mingione, G
    [J]. ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2002, 164 (03) : 213 - 259
  • [4] [Anonymous], COLLECTION WORKS MAT
  • [5] Antontsev S, 2007, INT SER NUMER MATH, V154, P33
  • [6] Vanishing solutions of anisotropic parabolic equations with variable nonlinearity
    Antontsev, S.
    Shmarev, S.
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2010, 361 (02) : 371 - 391
  • [7] ANISOTROPIC PARABOLIC EQUATIONS WITH VARIABLE NONLINEARITY
    Antontsev, S.
    Shmarev, S.
    [J]. PUBLICACIONS MATEMATIQUES, 2009, 53 (02) : 355 - 399
  • [8] ANTONTSEV S, 2007, ADV MATH SCI APPL, V17, P287
  • [9] Antontsev S.N., 2006, Ann. Univ. Ferrara. Sez., VVII, P19, DOI [DOI 10.1007/S11565-006-0002-9, 10.1007/s11565-006-0002-9]
  • [10] Antontsev S. N., 2008, P STEKLOV I MATH, V268, P2289