Automatic Identification Algorithm of Equivalent Electrochemical Circuit Based on Electroscopic Impedance Data for a Lead Acid Battery

被引:4
作者
Olarte, Javier [1 ,2 ,3 ]
Martinez de Ilarduya, Jaione [1 ]
Zulueta, Ekaitz [3 ]
Ferret, Raquel [2 ]
Fernandez-Gamiz, Unai [3 ]
Lopez-Guede, Jose Manuel [3 ]
机构
[1] Bcare, C Albert Einstein 48, Minano 01510, Alava, Spain
[2] Basque Res & Technol Alliance BRTA, Ctr Cooperat Res Alternat Energies CIC energiGUNE, Alava Technol Pk,Albert Einstein 48, Vitoria 01510, Alava, Spain
[3] Univ Basque Country, C Nieves Cano 12, Vitoria 01006, Alava, Spain
关键词
automatic identification; electrochemical model; electrochemical impedance spectrometry (EIS); electric equivalent circuit (EEC); lead acid batteries; DIFFERENTIAL EVOLUTION; MANAGEMENT-SYSTEM; SOC ESTIMATION; STATE; MODELS; TIME;
D O I
10.3390/electronics10111353
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Obtaining tools to analyze and predict the performance of batteries is a non-trivial challenge because it involves non-destructive evaluation procedures. At the research level, the development of sensors to allow cell-level monitoring is an innovative path, and electrochemical impedance spectrometry (EIS) has been identified as one of the most promising tools, as is the generation of advanced multivariable models that integrate environmental and internal-battery information. In this article, we describe an algorithm that automatically identifies a battery-equivalent electrochemical model based on electroscopic impedance data. This algorithm allows in operando monitoring of variations in the equivalent circuit parameters that will be used to further estimate variations in the state of health (SoH) and state of charge (SoC) of the battery based on a correlation with experimental aging data corresponding to states of failure or degradation. In the current work, the authors propose a two-step parameter identification algorithm. The first consists of a rough differential evolution algorithm-based identification. The second is based on the Nelder-Mead Simplex search method, which gives a fine parameter estimation. These algorithm results were compared with those of the commercially available Z-view, an equivalent circuit tool estimation that requires expert human input.
引用
收藏
页数:13
相关论文
共 29 条
  • [1] On the Compatibility of Electric Equivalent Circuit Models for Enhanced Flooded Lead Acid Batteries Based on Electrochemical Impedance Spectroscopy
    Aksakal, Can
    Sisman, Altug
    [J]. ENERGIES, 2018, 11 (01)
  • [2] Time-domain fitting of battery electrochemical impedance models
    Alavi, S. M. M.
    Birkl, C. R.
    Howey, D. A.
    [J]. JOURNAL OF POWER SOURCES, 2015, 288 : 345 - 352
  • [3] Advanced mathematical methods of SOC and SOH estimation for lithium-ion batteries
    Andre, Dave
    Appel, Christian
    Soczka-Guth, Thomas
    Sauer, Dirk Uwe
    [J]. JOURNAL OF POWER SOURCES, 2013, 224 : 20 - 27
  • [4] Modeling of Motorized Orthosis Control
    Aramendia, Inigo
    Zulueta, Ekaitz
    Teso-Fz-Betono, Daniel
    Saenz-Aguirre, Aitor
    Fernandez-Gamiz, Unai
    [J]. APPLIED SCIENCES-BASEL, 2019, 9 (12):
  • [5] Baccouche I, 2018, INT J RENEW ENERGY R, V8, P178
  • [6] Battery State Estimation for Lead-Acid Batteries under Float Charge Conditions by Impedance: Benchmark of Common Detection Methods
    Badeda, Julia
    Kwiecien, Monika
    Schulte, Dominik
    Sauer, Dirk Uwe
    [J]. APPLIED SCIENCES-BASEL, 2018, 8 (08):
  • [7] Parameter identification of an electrochemical lithium-ion battery model with convolutional neural network
    Chun, Huiyong
    Kim, Jungsoo
    Han, Soohee
    [J]. IFAC PAPERSONLINE, 2019, 52 (04): : 129 - 134
  • [8] FAILURE MODES OF LEAD-ACID-BATTERIES
    CULPIN, B
    RAND, DAJ
    [J]. JOURNAL OF POWER SOURCES, 1991, 36 (04) : 415 - 438
  • [9] Dost P., 2016, Athens Journal of echnology Engineering, V3, P255, DOI [10.30958/ajte.3-3-4, DOI 10.30958/AJTE.3-3-4]
  • [10] Fitting procedure based on Differential Evolution to evaluate impedance parameters of metal-coating systems
    Gonzalez, Francisco
    Greiner, David
    Mena, Vicente
    Souto, Ricardo M.
    Santana, Juan J.
    Aznarez, Juan J.
    [J]. ENGINEERING COMPUTATIONS, 2019, 36 (09) : 2960 - 2982