Hierarchical multidimensional MnO2 via hydrothermal synthesis for high performance supercapacitors

被引:74
作者
Bai, Xianlin [1 ,2 ]
Tong, Xinglin [1 ]
Gao, Yanli [2 ]
Zhu, Wanqing [2 ]
Fu, Can [2 ]
Ma, Jingyao [2 ]
Tan, Tianci [2 ]
Wang, Chunlei [2 ]
Luo, Yongsong [2 ]
Sun, Haibin [2 ]
机构
[1] Wuhan Univ Technol, Sch Sci, Natl Engn Lab Fiber Opt Sensing Technol, Wuhan 430074, Hubei, Peoples R China
[2] Xinyang Normal Univ, Dept Phys & Elect Engn, Key Lab Microelect Energy Henan Prov, Xinyang 464000, Peoples R China
基金
中国国家自然科学基金; 国家高技术研究发展计划(863计划);
关键词
Hydrothermal; MnO2; Supercapacitor; CHARGE-STORAGE PROPERTIES; ELECTRODE; ALPHA-MNO2; GRAPHENE; OXIDE; MICROSPHERES; CAPACITANCE; MORPHOLOGY; NANOWALLS; MECHANISM;
D O I
10.1016/j.electacta.2018.06.003
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Manganese dioxide (MnO2) is an ideal electrode material for supercapacitors due to its low cost and large theoretical specific capacity. We reported the hydrothermal synthesis MnO2 nanostructures with different morphologies through the variation of hydrothermal temperature and dwell time. It was found that cauliflower-like delta-MnO2 particles are prepared at a lower temperature while the needle-like alpha-MnO2 nanorods are formed at a higher temperature. The morphologies of MnO2 were also affected by the hydrothermal dwell time. The needle-like alpha-MnO2 nanorods have the higher specific surface (114 m(2) g(-1)) than that of the cauliflower-like delta-MnO2 particles. Electrochemical properties were evaluated using cyclic voltammetry (CV) and galvanostatic charge/discharge (GCD) and electrochemical impedance spectroscopy (EIS). The hierarchical multidimensional MnO2 architecture nanostructured surface with particles and nanorods, shows a maximum specific capacity (311.52 F g(-1) at 0.3 A g(-1)). These results provided a generic guideline in developing different nanostructured electrode materials for electrochemical energy storage. (c) 2018 Elsevier Ltd. All rights reserved.
引用
收藏
页码:525 / 533
页数:9
相关论文
共 50 条
  • [41] High-Performance Supercapacitors Based on ε-MnO2/RGO Fiber Electrodes for Wearable Energy Storage
    Liu, Xibin
    Liao, Gaohua
    Qi, Xiang
    Mei, Xiaoan
    Wang, Jifei
    Wei, Yong
    Qian, Kun
    Li, Chang
    Tao, Wei
    Tao, Jiayou
    JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2018, 18 (12) : 8352 - 8359
  • [42] Sputtered Synthesis of MnO2 Nanorods as Binder Free Electrode for High Performance Symmetric Supercapacitors
    Kumar, Ashwani
    Sanger, Amit
    Kumar, Arvind
    Kumar, Yogesh
    Chandra, Ramesh
    ELECTROCHIMICA ACTA, 2016, 222 : 1761 - 1769
  • [43] Synthesis of hydrothermally reduced graphene/MnO2 composites and their electrochemical properties as supercapacitors
    Li, Zhangpeng
    Wang, Jinqing
    Liu, Sheng
    Liu, Xiaohong
    Yang, Shengrong
    JOURNAL OF POWER SOURCES, 2011, 196 (19) : 8160 - 8165
  • [44] Facile shape-controlled growth of hierarchical mesoporous δ-MnO2 for the development of asymmetric supercapacitors
    Bag, Sourav
    Raj, C. Retna
    JOURNAL OF MATERIALS CHEMISTRY A, 2016, 4 (21) : 8384 - 8394
  • [45] Carbon Dot Regulating NiSe/MnO2 Heterostructures for High-Performance Supercapacitors
    Xie, Xiaotian
    Xu, Yi
    Liu, Jie
    Wang, Dongtian
    Lv, Tingting
    Yuan, Fanshu
    Zhang, Qianli
    ACS APPLIED MATERIALS & INTERFACES, 2024, 16 (49) : 68157 - 68168
  • [46] Development of High-performance Supercapacitors Based on MnO2/Functionalized Graphene Nanocomposites
    Choi, Bong Gill
    APPLIED CHEMISTRY FOR ENGINEERING, 2016, 27 (04): : 439 - 443
  • [47] Activated Carbon/MnO2 Composites as Electrode for High Performance Supercapacitors
    Choi, Jang Rak
    Lee, Ji Won
    Yang, Guijun
    Heo, Young-Jung
    Park, Soo-Jin
    CATALYSTS, 2020, 10 (02)
  • [48] A self-supporting graphene/MnO2 composite for high-performance supercapacitors
    Xin, Guoxiang
    Wang, Yanhui
    Zhang, Jinhui
    Jia, Shaopei
    Zang, Jianbing
    Wang, Yafei
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2015, 40 (32) : 10176 - 10184
  • [49] Hierarchical porous MnO2/CeO2 with high performance for supercapacitor electrodes
    Zhang, Huaihao
    Gu, Jiangna
    Tong, Jie
    Hu, Yongfeng
    Guan, Bing
    Hu, Bin
    Zhao, Jing
    Wang, Chengyin
    CHEMICAL ENGINEERING JOURNAL, 2016, 286 : 139 - 149
  • [50] Polydopamine and MnO2 core-shell composites for high-performance supercapacitors
    Hou, Ding
    Tao, Haisheng
    Zhu, Xuezhen
    Li, Maoguo
    APPLIED SURFACE SCIENCE, 2017, 419 : 580 - 585