Hierarchical multidimensional MnO2 via hydrothermal synthesis for high performance supercapacitors

被引:77
作者
Bai, Xianlin [1 ,2 ]
Tong, Xinglin [1 ]
Gao, Yanli [2 ]
Zhu, Wanqing [2 ]
Fu, Can [2 ]
Ma, Jingyao [2 ]
Tan, Tianci [2 ]
Wang, Chunlei [2 ]
Luo, Yongsong [2 ]
Sun, Haibin [2 ]
机构
[1] Wuhan Univ Technol, Sch Sci, Natl Engn Lab Fiber Opt Sensing Technol, Wuhan 430074, Hubei, Peoples R China
[2] Xinyang Normal Univ, Dept Phys & Elect Engn, Key Lab Microelect Energy Henan Prov, Xinyang 464000, Peoples R China
基金
国家高技术研究发展计划(863计划); 中国国家自然科学基金;
关键词
Hydrothermal; MnO2; Supercapacitor; CHARGE-STORAGE PROPERTIES; ELECTRODE; ALPHA-MNO2; GRAPHENE; OXIDE; MICROSPHERES; CAPACITANCE; MORPHOLOGY; NANOWALLS; MECHANISM;
D O I
10.1016/j.electacta.2018.06.003
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Manganese dioxide (MnO2) is an ideal electrode material for supercapacitors due to its low cost and large theoretical specific capacity. We reported the hydrothermal synthesis MnO2 nanostructures with different morphologies through the variation of hydrothermal temperature and dwell time. It was found that cauliflower-like delta-MnO2 particles are prepared at a lower temperature while the needle-like alpha-MnO2 nanorods are formed at a higher temperature. The morphologies of MnO2 were also affected by the hydrothermal dwell time. The needle-like alpha-MnO2 nanorods have the higher specific surface (114 m(2) g(-1)) than that of the cauliflower-like delta-MnO2 particles. Electrochemical properties were evaluated using cyclic voltammetry (CV) and galvanostatic charge/discharge (GCD) and electrochemical impedance spectroscopy (EIS). The hierarchical multidimensional MnO2 architecture nanostructured surface with particles and nanorods, shows a maximum specific capacity (311.52 F g(-1) at 0.3 A g(-1)). These results provided a generic guideline in developing different nanostructured electrode materials for electrochemical energy storage. (c) 2018 Elsevier Ltd. All rights reserved.
引用
收藏
页码:525 / 533
页数:9
相关论文
共 38 条
[31]   Manganese oxide-based materials as electrochemical supercapacitor electrodes [J].
Wei, Weifeng ;
Cui, Xinwei ;
Chen, Weixing ;
Ivey, Douglas G. .
CHEMICAL SOCIETY REVIEWS, 2011, 40 (03) :1697-1721
[32]   Charge Storage in Cation Incorporated α-MnO2 [J].
Young, Matthias J. ;
Holder, Aaron M. ;
George, Steven M. ;
Musgrave, Charles B. .
CHEMISTRY OF MATERIALS, 2015, 27 (04) :1172-1180
[33]   3D MnO2-graphene composites with large areal capacitance for high-performance asymmetric supercapacitors [J].
Zhai, Teng ;
Wang, Fuxin ;
Yu, Minghao ;
Xie, Shilei ;
Liang, Chaolun ;
Li, Cheng ;
Xiao, Fangming ;
Tang, Renheng ;
Wu, Qixiu ;
Lu, Xihong ;
Tong, Yexiang .
NANOSCALE, 2013, 5 (15) :6790-6796
[34]   Rapid microwave synthesis of δ-MnO2 microspheres and their electrochemical property [J].
Zhang, Xinhao ;
Liu, Xiaoyang ;
Li, Benxian ;
Chu, Qingxin ;
Wang, Ying ;
Zhao, Xudong ;
Wang, Xiaofeng .
JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2013, 24 (07) :2189-2196
[35]  
ZHANG XY, 2014, SCI REP UK, V4
[36]   Controlled synthesis of hierarchical birnessite-type MnO2 nanoflowers for supercapacitor applications [J].
Zhao, Shuoqing ;
Liu, Tianmo ;
Hou, Dewen ;
Zeng, Wen ;
Miao, Bin ;
Hussain, Shahid ;
Peng, Xianghe ;
Javed, Muhammad Sufyan .
APPLIED SURFACE SCIENCE, 2015, 356 :259-265
[37]   HYDROUS RUTHENIUM OXIDE AS AN ELECTRODE MATERIAL FOR ELECTROCHEMICAL CAPACITORS [J].
ZHENG, JP ;
CYGAN, PJ ;
JOW, TR .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1995, 142 (08) :2699-2703
[38]   Birnessite-type MnO2 Nanowalls and Their Magnetic Properties [J].
Zhu, H. T. ;
Luo, J. ;
Yang, H. X. ;
Liang, J. K. ;
Rao, G. H. ;
Li, J. B. ;
Du, Z. M. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2008, 112 (44) :17089-17094