Hierarchical multidimensional MnO2 via hydrothermal synthesis for high performance supercapacitors

被引:77
作者
Bai, Xianlin [1 ,2 ]
Tong, Xinglin [1 ]
Gao, Yanli [2 ]
Zhu, Wanqing [2 ]
Fu, Can [2 ]
Ma, Jingyao [2 ]
Tan, Tianci [2 ]
Wang, Chunlei [2 ]
Luo, Yongsong [2 ]
Sun, Haibin [2 ]
机构
[1] Wuhan Univ Technol, Sch Sci, Natl Engn Lab Fiber Opt Sensing Technol, Wuhan 430074, Hubei, Peoples R China
[2] Xinyang Normal Univ, Dept Phys & Elect Engn, Key Lab Microelect Energy Henan Prov, Xinyang 464000, Peoples R China
基金
国家高技术研究发展计划(863计划); 中国国家自然科学基金;
关键词
Hydrothermal; MnO2; Supercapacitor; CHARGE-STORAGE PROPERTIES; ELECTRODE; ALPHA-MNO2; GRAPHENE; OXIDE; MICROSPHERES; CAPACITANCE; MORPHOLOGY; NANOWALLS; MECHANISM;
D O I
10.1016/j.electacta.2018.06.003
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Manganese dioxide (MnO2) is an ideal electrode material for supercapacitors due to its low cost and large theoretical specific capacity. We reported the hydrothermal synthesis MnO2 nanostructures with different morphologies through the variation of hydrothermal temperature and dwell time. It was found that cauliflower-like delta-MnO2 particles are prepared at a lower temperature while the needle-like alpha-MnO2 nanorods are formed at a higher temperature. The morphologies of MnO2 were also affected by the hydrothermal dwell time. The needle-like alpha-MnO2 nanorods have the higher specific surface (114 m(2) g(-1)) than that of the cauliflower-like delta-MnO2 particles. Electrochemical properties were evaluated using cyclic voltammetry (CV) and galvanostatic charge/discharge (GCD) and electrochemical impedance spectroscopy (EIS). The hierarchical multidimensional MnO2 architecture nanostructured surface with particles and nanorods, shows a maximum specific capacity (311.52 F g(-1) at 0.3 A g(-1)). These results provided a generic guideline in developing different nanostructured electrode materials for electrochemical energy storage. (c) 2018 Elsevier Ltd. All rights reserved.
引用
收藏
页码:525 / 533
页数:9
相关论文
共 38 条
[1]  
Acerce M, 2015, NAT NANOTECHNOL, V10, P313, DOI [10.1038/nnano.2015.40, 10.1038/NNANO.2015.40]
[2]   Graphene and nanostructured MnO2 composite electrodes for supercapacitors [J].
Cheng, Qian ;
Tang, Jie ;
Ma, Jun ;
Zhang, Han ;
Shinya, Norio ;
Qin, Lu-Chang .
CARBON, 2011, 49 (09) :2917-2925
[3]   Manganese oxide thin film preparation by potentiostatic electrolyses and electrochromism [J].
Chigane, M ;
Ishikawa, M .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2000, 147 (06) :2246-2251
[4]   Asymmetric Supercapacitor Electrodes and Devices [J].
Choudhary, Nitin ;
Li, Chao ;
Moore, Julian ;
Nagaiah, Narasimha ;
Zhai, Lei ;
Jung, Yeonwoong ;
Thomas, Jayan .
ADVANCED MATERIALS, 2017, 29 (21)
[5]   A study on mechanism of charging/discharging at amorphous manganese oxide electrode in 0.1 M Na2SO4 solution [J].
Chun, Sang-Eun ;
Pyun, Su-Il ;
Lee, Gyoung-Ja .
ELECTROCHIMICA ACTA, 2006, 51 (28) :6479-6486
[6]   Characteristics and electrochemical performances of supercapacitors using double-walled carbon nanotube/δ-MnO2 hybrid material electrodes [J].
Fan, Zhuangjun ;
Xie, Miaomiao ;
Jin, Xi ;
Yan, Jun ;
Wei, Tong .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2011, 659 (02) :191-195
[7]   Microstructural Effects on Charge-Storage Properties in MnO2-Based Electrochemical Supercapacitors [J].
Ghodbane, Ouassim ;
Pascal, Jean-Louis ;
Favier, Frederic .
ACS APPLIED MATERIALS & INTERFACES, 2009, 1 (05) :1130-1139
[8]   MnO2/carbon nanowalls composite electrode for supercapacitor application [J].
Hassan, Sameh ;
Suzuki, Masaaki ;
Mori, Shinsuke ;
Abd El-Moneim, Ahmed .
JOURNAL OF POWER SOURCES, 2014, 249 :21-27
[9]   Morphology-controlled syntheses of α-MnO2 for electrochemical energy storage [J].
He, Weidong ;
Yang, Wenjin ;
Wang, Chenggang ;
Deng, Xiaolong ;
Liu, Baodan ;
Xu, Xijin .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2016, 18 (22) :15235-15243
[10]   A self-healable and highly stretchable supercapacitor based on a dual crosslinked polyelectrolyte [J].
Huang, Yan ;
Zhong, Ming ;
Huang, Yang ;
Zhu, Minshen ;
Pei, Zengxia ;
Wang, Zifeng ;
Xue, Qi ;
Xie, Xuming ;
Zhi, Chunyi .
NATURE COMMUNICATIONS, 2015, 6