Two experiments were conducted to investigate the effects of 1) different concentrations of dietary fat and 2) i.v. administration of a cholecystokinin receptor antagonist (MK-329) on feed intake and plasma concentrations of hormones and metabolites in dairy cattle. In Experiment 1, 4 lactating Holstein cows were used in a 4 x 4 Latin square design. Treatments were diets with 1) no fat added, 2) 30 S fat/kg feed (calcium salts of long-chain fatty acids as fat supplement), 3) 60 g fat/kg, and 4) 90 g fat/kg added. Cows were fed once daily a diet of concentrate, corn silage, alfalfa haylage, and alfalfa pellets. Dry matter intake decreased linearly with increasing concentrations of dietary fat (P ( 0.0001), Overall plasma concentrations of nonesterified fatty acids (P < 0.0001), triacylglycerol (P < 0.0006), and cholecystokinin (P < 0.02), increased linearly with each level of dietary fat, but there was a linear decrease in plasma insulin (P < 0.0008). In Experiment 2, 4 nonpregnant and nonlactating Holstein heifers were used in a cross-over design in a 2 x 2 factorial arrangement of treatments. Treatments were diet (fatty acids, 27 g/kg vs 103 g/kg diet dry matter) and i.v. injections (MK-329 vs vehicle). Heifers were fed once daily a total mixed ration of corn silage, cracked corn and soybean meal with or without fat supplement. Diets were switched by period and either MK-329 (70 mug/kg body weight) or its vehicle was injected i.v. at 2 hr postfeeding. Daily dry matter intake was decreased by feeding the high fat diet (P < 0.02) but was not affected by injections. Injection of MK-329, however, increased dry matter intake by 92% in heifers fed the high fat diet during the first 2 hr postinjection compared to vehicle injection, Plasma pancreatic polypeptide concentration was in creased by the high fat diet at 2 hr postfeeding (P < 0.02) but was towered by MK-329 at 1 hr postinjection (P < 0.001). Plasma insulin was lowered by the high fat diet (P < 0.01) but was not affected by injections. The elevated plasma cholecystokinin concentration may have mediated depressed feed intake of dairy cattle fed the high fat diets. (C) 2000 Elsevier Science Inc. All rights reserved.