Fully Convolutional Encoder-Decoder With an Attention Mechanism for Practical Pedestrian Trajectory Prediction

被引:10
作者
Chen, Kai [1 ]
Song, Xiao [2 ]
Yuan, Haitao [3 ]
Ren, Xiaoxiang [4 ]
机构
[1] Nanjing Univ Aeronaut & Astronaut, Coll Mech & Elect Engn, Nanjing 210016, Peoples R China
[2] Beihang Univ, Sch Cyber Sci & Technol, Beijing 100191, Peoples R China
[3] New Jersey Inst Technol, Dept Elect & Comp Engn, Newark, NJ 07102 USA
[4] Wendong New Dist Middle Sch, Lvliang 032100, Shanxi, Peoples R China
基金
中国国家自然科学基金;
关键词
Trajectory; Predictive models; Feature extraction; Convolutional neural networks; Markov processes; Force; Convolution; Pedestrian behavior; convolution; long short-term memory (LSTM); attention mechanism;
D O I
10.1109/TITS.2022.3170874
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Pedestrian trajectory prediction using video is essential for many practical traffic applications. Most existing pedestrian trajectory prediction methods are based on fully connected long short-term memory (LSTM) networks and perform well on public datasets. However, these methods still have three defects: a) Most of them rely on manual annotations to obtain information about the environment surrounding the subject pedestrian, which limits practical applications; b) The interaction among pedestrians and obstacles in a scene is little studied, which leads to greater prediction error; c) Traditional LSTM methods are based on the previous moment and ignore the correlation between the future and distant past states of the pedestrian, which generates unrealistic trajectories. To tackle these problems, first, in the stage of data processing, we use an image semantic segmentation algorithm to obtain multi-category obstacle information and design an end-to-end ``Siamese Position Extraction'' model to obtain more accurate pedestrian interaction data. Second, we design an end-to-end fully convolutional LSTM encoder-decoder with an attention mechanism (FLEAM) to overcome the shortcomings of LSTM. Third, we compare FLEAM with several state-of-the-art LSTM-based prediction methods on multiple video sequences in the datasets ETH, UCY and MOT20. The results show that our approach generates the same prediction error as the best results of the state-of-the-art method. However, FLEAM has more potential for practice application because it does not rely on manually annotated data. We further validate the effectiveness of FLEAM by employing manually annotated data, finding that it generates much less prediction error.
引用
收藏
页码:20046 / 20060
页数:15
相关论文
共 50 条
  • [11] Aircraft Bleed Air System Fault Prediction based on Encoder-Decoder with Attention Mechanism
    Su, Siyu
    Sun, Youchao
    Peng, Chong
    Wang, Yifan
    EKSPLOATACJA I NIEZAWODNOSC-MAINTENANCE AND RELIABILITY, 2023, 25 (03):
  • [12] Spatio-Temporal Encoder-Decoder Fully Convolutional Network for Video-Based Dimensional Emotion Recognition
    Du, Zhengyin
    Wu, Suowei
    Huang, Di
    Li, Weixin
    Wang, Yunhong
    IEEE TRANSACTIONS ON AFFECTIVE COMPUTING, 2021, 12 (03) : 565 - 578
  • [13] An encoder-decoder model with embedded attention-mechanism for efficient meshfree prediction of slope failure
    Chen, Jun
    Wang, Dongdong
    Deng, Like
    Ying, Jijun
    INTERNATIONAL JOURNAL OF DAMAGE MECHANICS, 2023, 32 (10) : 1164 - 1187
  • [14] Integrating Convolutional Attention and Encoder-Decoder Long Short-Term Memory for Enhanced Soil Moisture Prediction
    Han, Jingfeng
    Hong, Jian
    Chen, Xiao
    Wang, Jing
    Zhu, Jinlong
    Li, Xiaoning
    Yan, Yuguang
    Li, Qingliang
    WATER, 2024, 16 (23)
  • [15] Residual stacked gated recurrent unit with encoder-decoder architecture and an attention mechanism for temporal traffic prediction
    Kuo, R. J.
    Kunarsito, D. A.
    SOFT COMPUTING, 2022, 26 (17) : 8617 - 8633
  • [16] MEDA: Multi-output Encoder-Decoder for Spatial Attention in Convolutional Neural Networks
    Li, Huayu
    Razi, Abolfazl
    CONFERENCE RECORD OF THE 2019 FIFTY-THIRD ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS & COMPUTERS, 2019, : 2087 - 2091
  • [17] Attention-Gate-Based Encoder-Decoder Network for Automatical Building Extraction
    Deng, Wenjing
    Shi, Qian
    Li, Jun
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2021, 14 (14) : 2611 - 2620
  • [18] Attention-Based Encoder-Decoder Network for Prediction of Electromagnetic Scattering Fields
    Zhang, Ying
    He, Mang
    2022 IEEE 10TH ASIA-PACIFIC CONFERENCE ON ANTENNAS AND PROPAGATION, APCAP, 2022,
  • [19] ED-ACNN: Novel attention convolutional neural network based on encoder-decoder framework for human traffic prediction
    Pu, Bin
    Liu, Yuan
    Zhu, Ningbo
    Li, Kenli
    Li, Keqin
    APPLIED SOFT COMPUTING, 2020, 97
  • [20] Symmetry Encoder-Decoder Network with Attention Mechanism for Fast Video Object Segmentation
    Guo, Mingyue
    Zhang, Dejun
    Sun, Jun
    Wu, Yiqi
    SYMMETRY-BASEL, 2019, 11 (08):