Application of machine learning in diagnostic value of mRNAs for bipolar disorder

被引:5
作者
Wu, Xulong [1 ]
Zhu, Lulu [1 ]
Zhao, Zhi [1 ]
Xu, Bingyi [1 ]
Yang, Jialei [1 ]
Long, Jianxiong [1 ]
Su, Li [1 ]
机构
[1] Guangxi Med Univ, Sch Publ Hlth, 22 Shuangyong Rd, Guangxi 530021, Peoples R China
基金
中国国家自然科学基金;
关键词
Bipolar disorder; Artificial Neural Networks; Extreme Gradient Boosting; Random Forest; Support Vector Machine; SCHIZOPHRENIA; ASSOCIATION; RISK;
D O I
10.1080/08039488.2021.1937311
中图分类号
R749 [精神病学];
学科分类号
100205 ;
摘要
Purpose Bipolar disorder (BD) is a type of severe mental illness with symptoms of mania or depression, it is necessary to find out effective diagnostic biomarkers for BD due to diagnosing BD is based on clinical interviews without objective indicators. Materials and methods The mRNA expression levels of genes included PIK3R1, FYN, TP53, PRKCZ, PRKCB, and YWHAB in the peripheral blood of 43 patients with bipolar disorder and 47 healthy controls were detected. Machine learning methods included Artificial Neural Networks, Extreme Gradient Boosting, Random Forest, and Support Vector Machine were adopted to fit different gene combinations to evaluate diagnostic value for bipolar disorder. Results The combination 'PIK3R1 + FYN' in the SVM model showed the best diagnostic value, with AUC, sensitivity, and specificity values of 0.951, 0.928, and 0.937, respectively. Conclusions The diagnostic efficiency for bipolar disorder was significantly improved by fitting PIK3R1 and FYN through the Support Vector Machine model.
引用
收藏
页码:81 / 88
页数:8
相关论文
共 50 条
[31]   Volumetric brain magnetic resonance imaging predicts functioning in bipolar disorder: A machine learning approach [J].
Sartori, Juliana M. ;
Reckziegel, Ramiro ;
Passos, Ives Cavalcante ;
Czepielewski, Leticia S. ;
Fijtman, Adam ;
Sodre, Leonardo A. ;
Massuda, Raffael ;
Goi, Pedro D. ;
Vianna-Sulzbach, Mireia ;
Cardoso, Taiane de Azevedo ;
Kapczinski, Flavio ;
Mwangi, Benson ;
Gama, Clarissa S. .
JOURNAL OF PSYCHIATRIC RESEARCH, 2018, 103 :237-243
[32]   Exploring machine learning to predict depressive relapses of bipolar disorder patients [J].
Rotenberg, Luisa de Siqueira ;
Borges-Junior, Renato Gomes ;
Lafer, Beny ;
Salvini, Rogerio ;
Dias, Rodrigo da Silva .
JOURNAL OF AFFECTIVE DISORDERS, 2021, 295 :681-687
[33]   A Machine Learning-Based Method to Identify Bipolar Disorder Patients [J].
J. Mateo-Sotos ;
A. M. Torres ;
J. L. Santos ;
O. Quevedo ;
C. Basar .
Circuits, Systems, and Signal Processing, 2022, 41 :2244-2265
[34]   Reevaluating feature importances in machine learning models for schizophrenia and bipolar disorder: The need for true associations [J].
Takefuji, Yoshiyasu .
BRAIN BEHAVIOR AND IMMUNITY, 2025, 124 :123-124
[35]   Identification of bipolar disorder using a combination of multimodality magnetic resonance imaging and machine learning techniques [J].
Hao Li ;
Liqian Cui ;
Liping Cao ;
Yizhi Zhang ;
Yueheng Liu ;
Wenhao Deng ;
Wenjin Zhou .
BMC Psychiatry, 20
[36]   A Machine Learning-Based Method to Identify Bipolar Disorder Patients [J].
Mateo-Sotos, J. ;
Torres, A. M. ;
Santos, J. L. ;
Quevedo, O. ;
Basar, C. .
CIRCUITS SYSTEMS AND SIGNAL PROCESSING, 2022, 41 (04) :2244-2265
[37]   Simultaneous Utilization of Mood Disorder Questionnaire and Bipolar Spectrum Diagnostic Scale for Machine Learning-Based Classification of Patients With Bipolar Disorders and Depressive Disorders [J].
Kim, Kyungwon ;
Lim, Hyun Ju ;
Park, Je-Min ;
Lee, Byung-Dae ;
Lee, Young-Min ;
Suh, Hwagyu ;
Moon, Eunsoo .
PSYCHIATRY INVESTIGATION, 2024, 21 (08) :877-884
[38]   Diagnostic and clinical implications of functional neuroimaging in bipolar disorder [J].
Brooks, John O., III ;
Vizueta, Nathalie .
JOURNAL OF PSYCHIATRIC RESEARCH, 2014, 57 :12-25
[39]   Immunity, Inflammation, and Bipolar Disorder: Diagnostic and Therapeutic Implications [J].
Hamdani, Nora ;
Doukhan, Raphael ;
Kurtlucan, Ozlem ;
Tamouza, Ryad ;
Leboyer, Marion .
CURRENT PSYCHIATRY REPORTS, 2013, 15 (09)
[40]   Serine enantiomers as diagnostic biomarkers for schizophrenia and bipolar disorder [J].
Kenji Hashimoto .
European Archives of Psychiatry and Clinical Neuroscience, 2016, 266 :83-85