Application of machine learning in diagnostic value of mRNAs for bipolar disorder

被引:4
作者
Wu, Xulong [1 ]
Zhu, Lulu [1 ]
Zhao, Zhi [1 ]
Xu, Bingyi [1 ]
Yang, Jialei [1 ]
Long, Jianxiong [1 ]
Su, Li [1 ]
机构
[1] Guangxi Med Univ, Sch Publ Hlth, 22 Shuangyong Rd, Guangxi 530021, Peoples R China
基金
中国国家自然科学基金;
关键词
Bipolar disorder; Artificial Neural Networks; Extreme Gradient Boosting; Random Forest; Support Vector Machine; SCHIZOPHRENIA; ASSOCIATION; RISK;
D O I
10.1080/08039488.2021.1937311
中图分类号
R749 [精神病学];
学科分类号
100205 ;
摘要
Purpose Bipolar disorder (BD) is a type of severe mental illness with symptoms of mania or depression, it is necessary to find out effective diagnostic biomarkers for BD due to diagnosing BD is based on clinical interviews without objective indicators. Materials and methods The mRNA expression levels of genes included PIK3R1, FYN, TP53, PRKCZ, PRKCB, and YWHAB in the peripheral blood of 43 patients with bipolar disorder and 47 healthy controls were detected. Machine learning methods included Artificial Neural Networks, Extreme Gradient Boosting, Random Forest, and Support Vector Machine were adopted to fit different gene combinations to evaluate diagnostic value for bipolar disorder. Results The combination 'PIK3R1 + FYN' in the SVM model showed the best diagnostic value, with AUC, sensitivity, and specificity values of 0.951, 0.928, and 0.937, respectively. Conclusions The diagnostic efficiency for bipolar disorder was significantly improved by fitting PIK3R1 and FYN through the Support Vector Machine model.
引用
收藏
页码:81 / 88
页数:8
相关论文
共 50 条
[21]   Prediction of suicidality in bipolar disorder using variability of intrinsic brain activity and machine learning [J].
Tian, Shui ;
Zhu, Rongxin ;
Chen, Zhilu ;
Wang, Huan ;
Chattun, Mohammad Ridwan ;
Zhang, Siqi ;
Shao, Junneng ;
Wang, Xinyi ;
Yao, Zhijian ;
Lu, Qing .
HUMAN BRAIN MAPPING, 2023, 44 (07) :2767-2777
[22]   MicroRNAs in bipolar disorder: diagnostic and therapeutic applications [J].
Suarez-Gomez, Maria ;
Alejandre-Duran, Encarna ;
Ruiz-Rubio, Manuel .
REVISTA DE NEUROLOGIA, 2011, 53 (02) :91-98
[23]   Speechreading as a secondary diagnostic tool in bipolar disorder [J].
Erdener, Dogu ;
Erdener, Sefik Evren .
MEDICAL HYPOTHESES, 2022, 158
[24]   Diagnostic Stability in Bipolar Disorder: A Narrative Review [J].
Cegla-Schvartzman, Fanny B. ;
Ovejero, Santiago ;
Lopez-Castroman, Jorge ;
Baca-Garcia, Enrique .
HARVARD REVIEW OF PSYCHIATRY, 2019, 27 (01) :3-14
[25]   Application of machine learning methods in predicting schizophrenia and bipolar disorders: A systematic review [J].
Montazeri, Mahdieh ;
Montazeri, Mitra ;
Bahaadinbeigy, Kambiz ;
Montazeri, Mohadeseh ;
Afraz, Ali .
HEALTH SCIENCE REPORTS, 2023, 6 (01)
[26]   Diagnostic issues in bipolar disorder [J].
Angst, J ;
Gamma, A ;
Benazzi, F ;
Ajdacic, V ;
Eich, D ;
Rössler, W .
EUROPEAN NEUROPSYCHOPHARMACOLOGY, 2003, 13 :S43-S50
[27]   Investigation of serum cystatin C levels and their diagnostic value in combination with inflammatory ratios in patients with bipolar disorder [J].
Zhang, Chenjiao ;
Ma, Jinbao ;
Gao, Huanqin ;
Luo, Yanhong ;
Feng, Junhui ;
Wei, Yanyan ;
Chen, Jingxu .
FRONTIERS IN PSYCHIATRY, 2025, 16
[28]   Implicit motor learning in bipolar disorder [J].
Chrobak, Adrian Andrzej ;
Siuda-Krzywicka, Katarzyna ;
Siwek, Grzegorz Przemyslaw ;
Arciszewska, Aleksandra ;
Siwek, Marcin ;
Starowicz-Filip, Anna ;
Dudek, Dominika .
JOURNAL OF AFFECTIVE DISORDERS, 2015, 174 :250-256
[29]   Exploring machine learning to predict depressive relapses of bipolar disorder patients [J].
Rotenberg, Luisa de Siqueira ;
Borges-Junior, Renato Gomes ;
Lafer, Beny ;
Salvini, Rogerio ;
Dias, Rodrigo da Silva .
JOURNAL OF AFFECTIVE DISORDERS, 2021, 295 :681-687
[30]   A Machine Learning-Based Method to Identify Bipolar Disorder Patients [J].
J. Mateo-Sotos ;
A. M. Torres ;
J. L. Santos ;
O. Quevedo ;
C. Basar .
Circuits, Systems, and Signal Processing, 2022, 41 :2244-2265