Oxygen Vacancy-Enhanced Photoelectrochemical Water Splitting of WO3/NiFe-Layered Double Hydroxide Photoanodes

被引:34
|
作者
Lin, Wei [1 ]
Yu, Yue [1 ]
Fang, Yaoxun [1 ]
Liu, Jianqiao [1 ]
Li, Xinran [1 ]
Wang, Jiangpeng [1 ]
Zhang, Yilin [1 ]
Wang, Chao [1 ]
Wang, Lin [1 ]
Yu, Xuelian [1 ]
机构
[1] China Univ Geosci, Sch Mat Sci & Technol, Beijing Key Lab Mat Utilizat Nonmetall Minerals &, Natl Lab Mineral Mat, Beijing 100083, Peoples R China
关键词
LAYERED DOUBLE HYDROXIDE; TUNGSTEN VACANCIES; CHARGE SEPARATION; DUAL OXYGEN; WO3; ARRAYS; NANOSTRUCTURES; HETEROJUNCTION; CHALCOGENIDE; PERFORMANCE;
D O I
10.1021/acs.langmuir.1c00638
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Photoelectrochemical (PEC) water splitting serves as one of the promising approaches for producing clean and renewable energy, and their solar-hydrogen energy conversion efficiency depends on the interfacial charge separation and carrier mobility. Herein, we report an effective strategy to promote the PEC performance by fabricating a WO3 photoanode rich in oxygen vacancies (Ov) modified by NiFe-based layered double hydroxide (LDH). When WO3-Ov/NiFe-LDH is used as a photoanode, the maximum photocurrent density at 1.8 V versus RHE has been significantly enhanced to 2.58 mA.cm(-2), which is 4.3 times higher than that of WO3. In addition, analogues were studied in controlled experiments without Ov, which further demonstrated that the synergistic effect of NiFe-LDH and Ov resulted in increased carrier concentration and driving force. According to electrical impedance spectroscopy, X-ray photoelectron spectroscopy, and Mott-Schottky analysis, the built-in electronic field in WO3 homojunction, along with the accelerated hole capture by the NiFeLDH cocatalyst contributes to the improved charge separation and transport in the WO3-Ov/NiFe-LDH electrode. This work proposes an efficient and valuable strategy for designing the structure of WO3-based photoelectrodes.
引用
收藏
页码:6490 / 6497
页数:8
相关论文
共 50 条
  • [31] Enhanced plasmonic photoelectrochemical response of Au sandwiched WO3 photoanodes
    Ng, Kim Hang
    Minggu, Lorna Jeffery
    Jaafar, Nurul Akmal
    Arifin, Khuzaimah
    Bin Kassim, Mohammad
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2017, 172 : 361 - 367
  • [32] Exfoliated NiFe Layered Double Hydroxide Cocatalyst for Enhanced Photoelectrochemical Water Oxidation with Hematite Photoanode
    Park, Yoon Bin
    Kim, Ju Hun
    Jang, Youn Jeong
    Lee, Jin Ho
    Lee, Min Hee
    Lee, Byeong Jun
    Youn, Duck Hyun
    Lee, Jae Sung
    CHEMCATCHEM, 2019, 11 (01) : 443 - 448
  • [33] Evaluating the promotional effects of WO3 underlayers in BiVO4 water splitting photoanodes
    Feng, Jianyong
    Huang, Huiting
    Guo, Wenxiu
    Xu, Xiaoming
    Yao, Yingfang
    Yu, Zhentao
    Li, Zhaosheng
    Zou, Zhigang
    CHEMICAL ENGINEERING JOURNAL, 2021, 417
  • [34] Nonprecious bimetallic NiFe-layered hydroxide nanosheets as a catalyst for highly efficient electrochemical water splitting
    Inamdar, Akbar I.
    Chavan, Harish S.
    Jo, Yongcheol
    Im, Hyunsik
    Kim, Hyungsang
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2021, 45 (11) : 16963 - 16972
  • [35] Layered double hydroxide modified bismuth vanadate as an efficient photoanode for enhancing photoelectrochemical water splitting
    Billah, Md. Masum
    Kawamura, Go
    MATERIALS HORIZONS, 2025,
  • [36] Integration of MgAl-layered double hydroxides into TiO2 nanorods as photoanodes for enhanced photoelectrochemical water splitting
    Wang, Yanjun
    Zhang, Zhengyang
    Wang, Shiwei
    Han, Minmin
    CATALYSIS COMMUNICATIONS, 2022, 164
  • [37] Structural Instability of NiFe-Layered Double Hydroxide Nanosheets during Water Oxidation Operation
    Meng, Xiaoyi
    Zhao, Xiaohua
    CHEMNANOMAT, 2024, 10 (08):
  • [38] Promoting Surface Reconstruction of NiFe Layered Double Hydroxide for Enhanced Oxygen Evolution
    Lei, Hang
    Ma, Liang
    Wan, Qixiang
    Tan, Shaozao
    Yang, Bo
    Wang, Zilong
    Mai, Wenjie
    Fan, Hong Jin
    ADVANCED ENERGY MATERIALS, 2022, 12 (48)
  • [39] Enhanced Photoelectrochemical Water Oxidation with Ferrihydrite Decorated WO3
    Liu, Jiali
    Shang, Zhichao
    Chen, Jinxin
    Wen, Liping
    Liu, Jikai
    CATALYSIS LETTERS, 2022, 152 (09) : 2575 - 2584
  • [40] Self-adaptively electrochemical reconstruction of NiFe-layered double hydroxide on Ni foam for high-performance water splitting
    Wang, Lumeng
    Liu, Daoxin
    Zhang, Zhongfeng
    Li, Ye
    Liu, Jingru
    Yang, Yang
    Xue, Bing
    Li, Fangfei
    JOURNAL OF ALLOYS AND COMPOUNDS, 2023, 934