Partitioning of acidic, basic and neutral amino acids into imidazolium-based ionic liquids

被引:34
|
作者
Absalan, Ghodratollah [1 ]
Akhond, Morteza [1 ]
Sheikhian, Leila [1 ]
机构
[1] Shiraz Univ, Dept Chem, Fac Sci, Shiraz 71457, Iran
关键词
Neutral amino acid; Acidic amino acid; Basic amino acid; Ionic liquid; Partition coefficient; Back extraction; REVERSED MICELLES; SOLVENT; HYDROPHOBICITY; COEFFICIENTS; EXTRACTION; DEPENDENCE; SOLVATION; PEPTIDES; IL-OPPH2; WATER;
D O I
10.1007/s00726-009-0391-z
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
In this paper, partitioning behaviors of typical neutral (Alanine), acidic (Glutamic acid) and basic (Lysine) amino acids into imidazolium-based ionic liquids [C(4)mim][PF6], [C(6)mim][PF6], [C(8)mim][PF6], [C(6)mim][BF4] and [C(8)mim][BF4] as extracting solvents were examined. [C(6)mim][BF4] showed the best efficiency for partitioning of amino acids. The partition coefficients of amino acids in ionic liquids were found to depend strongly on pH of the aqueous solution, amino acid and ionic liquid chemical structures. Different chemical forms of amino acids in aqueous solutions were pH dependent, so the pH value of the aqueous phase was a determining factor for extraction of amino acids into ionic liquid phase. Both water content of ionic liquids and charge densities of their anionic and cationic parts were important factors for partitioning of cationic and anionic forms of amino acids into ionic liquid phase. Extracted amino acids were back extracted into phosphate buffer solutions adjusted on appropriate pH values. The results showed that ionic liquids could be used as suitable modifiers on the stationary phase of an HPLC column for efficient separation of acidic, basic, and neutral amino acids.
引用
收藏
页码:167 / 174
页数:8
相关论文
共 50 条
  • [31] Electronic structural properties of amino/hydroxyl functionalized imidazolium-based bromide ionic liquids
    Hu, Xiaoling
    Jia, Xingang
    Su, Kehe
    Gu, Xuefan
    OPEN CHEMISTRY, 2020, 18 (01): : 576 - 583
  • [32] Spectroscopic studies of the aggregation of imidazolium-based ionic liquids
    Zhang, Hucheng
    Li, Kun
    Liang, Huijun
    Wang, Jianji
    COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2008, 329 (1-2) : 75 - 81
  • [33] Solution thermodynamics of imidazolium-based ionic liquids and water
    Anthony, JL
    Maginn, EJ
    Brennecke, JF
    JOURNAL OF PHYSICAL CHEMISTRY B, 2001, 105 (44): : 10942 - 10949
  • [34] Halogenation of imidazolium-based ionic liquids: Thermodynamic perspective
    Chaban, Vitaly
    JOURNAL OF CHEMICAL THERMODYNAMICS, 2016, 98 : 81 - 85
  • [35] Fluorination effect in the volatility of imidazolium-based ionic liquids
    Rodrigues, A. S. M. C.
    Fernandes, A. M.
    Devemy, J.
    Gomes, M. Costa
    Santos, L. M. N. B. F.
    JOURNAL OF MOLECULAR LIQUIDS, 2019, 282 : 385 - 391
  • [36] Modelling shear thinning of Imidazolium-based ionic liquids
    Yamada, Tatsuya
    Bonnaud, Patrick A.
    Tejima, Syogo
    Fujita, Jun-ichi
    CHEMICAL PHYSICS LETTERS, 2023, 816
  • [37] Femtosecond UV Excitation in Imidazolium-Based Ionic Liquids
    Chandrasekhar, N.
    Schalk, O.
    Unterreiner, A. -N.
    JOURNAL OF PHYSICAL CHEMISTRY B, 2008, 112 (49): : 15718 - 15724
  • [38] Sorption of imidazolium-based ionic liquids to aquatic sediments
    Beaulieu, J. J.
    Tank, J. L.
    Kopacz, M.
    CHEMOSPHERE, 2008, 70 (07) : 1320 - 1328
  • [39] Thermophysical Properties of Imidazolium-Based Lipidic Ionic Liquids
    Murray, Samuel M.
    Zimlich, T. Kyle
    Mirjafari, Arsalan
    O'Brien, Richard A.
    Davis, James H., Jr.
    West, Kevin N.
    JOURNAL OF CHEMICAL AND ENGINEERING DATA, 2013, 58 (06): : 1516 - 1522
  • [40] Broadband Terahertz Spectroscopy of Imidazolium-Based Ionic Liquids
    Mou, Sen
    Rubano, Andrea
    Paparo, Domenico
    JOURNAL OF PHYSICAL CHEMISTRY B, 2018, 122 (12): : 3133 - 3140