MEDIAN ROBUST EXTENDED LOCAL BINARY PATTERN FOR TEXTURE CLASSIFICATION

被引:0
作者
Liu, Li [1 ]
Fieguth, Paul [2 ]
Pietikainen, Matti [3 ]
Lao, Songyang [1 ]
机构
[1] Natl Univ Def Technol, Sch Informat Syst & Management, Changsha 410073, Hunan, Peoples R China
[2] Univ Waterloo, Dept Syst Design Engn, Waterloo, ON N2L 3G1, Canada
[3] Univ Oulu, Dept Comp Sci & Engn, Ctr Machine Vis Res, Oulu 90014, Finland
来源
2015 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP) | 2015年
关键词
Texture classification; Feature extraction; Local binary pattern; Local descriptors; Median filtering; RECOGNITION;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Local Binary Patterns (LBP) are among the most computationally efficient amongst high-performance texture features. However, LBP is very sensitive to image noise and is unable to capture macrostructure information. To best address these disadvantages, in this paper we introduce a novel descriptor for texture classification, the Median Robust Extended Local Binary Pattern (MRELBP). In contrast to traditional LBP and many LBP variants, MRELBP compares local image medians instead of raw image intensities. We develop a multiscale LBP-type descriptor by efficiently comparing image medians over a novel sampling scheme, which can capture both microstructure and macrostructure. A comprehensive evaluation on benchmark datasets reveals MRELBP's remarkable performance (robust to gray scale variations, rotation changes and noise) relative to state-of-the-art algorithms, but nevertheless at a low computational cost, producing the best classification scores of 99.82%, 99.38% and 99.77% on three popular Outex test suites. Furthermore, MRELBP is also shown to be highly robust to image noise including Gaussian noise, Gaussian blur, Salt-and-Pepper noise and random pixel corruption.
引用
收藏
页码:2319 / 2323
页数:5
相关论文
共 30 条
  • [1] Face description with local binary patterns:: Application to face recognition
    Ahonen, Timo
    Hadid, Abdenour
    Pietikainen, Matti
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2006, 28 (12) : 2037 - 2041
  • [2] Ahonen T, 2009, LECT NOTES COMPUT SC, V5575, P61, DOI 10.1007/978-3-642-02230-2_7
  • [3] Alahi A, 2012, PROC CVPR IEEE, P510, DOI 10.1109/CVPR.2012.6247715
  • [4] [Anonymous], P BRIT MACH VIS C BM
  • [5] [Anonymous], 2008, P 19 INT C PATT REC
  • [6] BRIEF: Computing a Local Binary Descriptor Very Fast
    Calonder, Michael
    Lepetit, Vincent
    Oezuysal, Mustafa
    Trzcinski, Tomasz
    Strecha, Christoph
    Fua, Pascal
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2012, 34 (07) : 1281 - 1298
  • [7] RLBP: Robust Local Binary Pattern
    Chen, Jie
    Kellokumpu, Vili
    Zhao, Guoying
    Pietikainen, Matti
    [J]. PROCEEDINGS OF THE BRITISH MACHINE VISION CONFERENCE 2013, 2013,
  • [8] Noise tolerant local binary pattern operator for efficient texture analysis
    Fathi, Abdolhossein
    Naghsh-Nilchi, Ahmad Reza
    [J]. PATTERN RECOGNITION LETTERS, 2012, 33 (09) : 1093 - 1100
  • [9] Discriminative features for texture description
    Guo, Yimo
    Zhao, Guoying
    Pietikainen, Matti
    [J]. PATTERN RECOGNITION, 2012, 45 (10) : 3834 - 3843
  • [10] A Completed Modeling of Local Binary Pattern Operator for Texture Classification
    Guo, Zhenhua
    Zhang, Lei
    Zhang, David
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2010, 19 (06) : 1657 - 1663