Exact number of solutions of a prescribed mean curvature equation

被引:33
作者
Li, Weisheng [1 ,2 ]
Liu, Zhaoli [1 ]
机构
[1] Capital Normal Univ, Sch Math Sci, Beijing 100048, Peoples R China
[2] Qiongzhou Univ, Dept Math, Hainan 572200, Peoples R China
关键词
Exact number of solutions; One-dimensional prescribed mean curvature equation; Time-map analysis; PROBLEMS INVOLVING CONCAVE; POSITIVE SOLUTIONS; EXACT MULTIPLICITY; UNIQUENESS;
D O I
10.1016/j.jmaa.2010.01.055
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the exact number of positive solutions of the Dirichlet problem for the one-dimensional prescribed mean curvature equation -(u'/root 1 + u'(2))' = lambda(u(p)+u(q)), u(0) = u(1) = 0, where lambda > 0 is a parameter and p, q satisfy either 1 < p < q < +infinity or 0 < p < q < 1. (C) 2010 Elsevier Inc. All rights reserved.
引用
收藏
页码:486 / 498
页数:13
相关论文
共 21 条
[1]   COMBINED EFFECTS OF CONCAVE AND CONVEX NONLINEARITIES IN SOME ELLIPTIC PROBLEMS [J].
AMBROSETTI, A ;
BREZIS, H ;
CERAMI, G .
JOURNAL OF FUNCTIONAL ANALYSIS, 1994, 122 (02) :519-543
[2]   The prescribed mean curvature equation for nonparametric surfaces [J].
Amster, P ;
Mariani, MC .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2003, 52 (04) :1069-1077
[3]   Periodic solutions for nonlinear systems with mean curvature-like operators [J].
Benevieri, Pierluigi ;
do O, Joao Marcos ;
de Medeiros, Everaldo Souto .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2006, 65 (07) :1462-1475
[4]  
Bonheure D., 2007, REND I MAT U TRIESTE, V39, P63
[5]   Classical and non-classical solutions of a prescribed curvature equation [J].
Bonheure, Denis ;
Habets, Patrick ;
Obersnel, Franco ;
Omari, Pierpaolo .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2007, 243 (02) :208-237
[6]   Ground states of a prescribed mean curvature equation [J].
del Pino, Manuel ;
Guerra, Ignacio .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2007, 241 (01) :112-129
[7]  
Habets P, 2004, ADV NONLINEAR STUD, V4, P1
[8]   Multiple positive solutions of a one-dimensional prescribed mean curvature problem [J].
Habets, Patrick ;
Omari, Pierpaolo .
COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2007, 9 (05) :701-730
[9]   Uniqueness and exact multiplicity of solutions for a class of Dirichlet problems [J].
Korman, Philip .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2008, 244 (10) :2602-2613
[10]   UNIQUENESS OF RADIAL SOLUTIONS OF SEMILINEAR ELLIPTIC-EQUATIONS [J].
KWONG, MK ;
LI, Y .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1992, 333 (01) :339-363