Pontryagin's Principle for Optimal Control Problem Governed by 3D Navier-Stokes Equations

被引:8
作者
Kien, B. T. [1 ]
Roesch, A. [2 ]
Wachsmuth, D. [3 ]
机构
[1] Vietnam Acad Sci & Technol, Inst Math, 18 Hoang Quoc Viet Rd, Hanoi, Vietnam
[2] Univ Duisburg Essen, Fac Math, Thea Leymann Str 9, D-45127 Essen, Germany
[3] Wurzburg Univ, Inst Math, Emil Fischer St 30, D-97074 Wurzburg, Germany
关键词
Optimal control; Navier-Stokes equation; Pontryagin's principle; Strong solution; Control constraint;
D O I
10.1007/s10957-017-1081-8
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
This paper deals with the Pontryagin maximum principle for optimal control problems governed by 3D Navier-Stokes equations with pointwise control constraint. The obtained result is proved by using some results on regularity of solutions of the Navier-Stokes equations and techniques of optimal control theory.
引用
收藏
页码:30 / 55
页数:26
相关论文
共 21 条
[1]  
[Anonymous], OPTIMAL CONTROL VISC
[2]  
[Anonymous], 1990, NONLINEAR FUNCTION A
[3]   Optimal control of Navier-Stokes equations with periodic inputs [J].
Barbu, V .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1998, 31 (1-2) :15-31
[4]   Existence and uniqueness of optimal control to the Navier-Stokes equations [J].
Bewley, T ;
Temam, R ;
Ziane, M .
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 2000, 330 (11) :1007-1011
[5]  
Brezis H., 2011, FUNCTIONAL ANAL SOBO
[6]   Error estimates for the numerical approximation of a distributed control problem for the steady-state Navier-Stokes equations [J].
Casas, Eduardo ;
Mateos, Mariano ;
Raymond, Jean-Pierre .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2007, 46 (03) :952-982
[7]   FIRST- AND SECOND-ORDER OPTIMALITY CONDITIONS FOR A CLASS OF OPTIMAL CONTROL PROBLEMS WITH QUASILINEAR ELLIPTIC EQUATIONS [J].
Casas, Eduardo ;
Troeltzsch, Fredi .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2009, 48 (02) :688-718
[8]  
CONSTANTIN P, 1988, Navier-stokes equations
[9]   State-constrained optimal control of the three-dimensional stationary Navier-Stokes equations [J].
De Los Reyes, J. C. ;
Griesse, R. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 343 (01) :257-272
[10]   Optimal control of the stationary Navier-Stokes equations with mixed control-state constraints [J].
de los Reyes, J. C. ;
Troeltzsch, F. .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2007, 46 (02) :604-629