Adaptive density estimation on bounded domains

被引:4
作者
Bertin, Karine [1 ]
El Kolei, Salima [2 ]
Klutchnikoff, Nicolas [3 ]
机构
[1] Univ Valparaiso, CIMFAV, Gen Cruz 222, Valparaiso, Chile
[2] UBL, ENSAI, Campus Ker Lann,Rue Blaise Pascal,BP 37203, F-35172 Bruz, France
[3] Univ Rennes, CNRS, IRMAR Inst Rech Math Rennes, UMR 6625, F-35000 Rennes, France
来源
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES | 2019年 / 55卷 / 04期
关键词
Multivariate kernel density estimation; Bounded data; Boundary bias; Adaptive estimation; Oracle inequality; Sobolev-Slobodetskii classes; BANDWIDTH SELECTION; KERNEL ESTIMATORS; SUP-NORM; SOBOLEV; INEQUALITIES; CONSTANT; SPACES; RATES;
D O I
10.1214/18-AIHP938
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We study the estimation, in L-p-norm, of density functions defined on [0, 1](d). We construct a new family of kernel density estimators that do not suffer from the so-called boundary bias problem and we propose a data-driven procedure based on the Goldenshluger and Lepski approach that jointly selects a kernel and a bandwidth. We derive two estimators that satisfy oracle-type inequalities. They are also proved to be adaptive over a scale of anisotropic or isotropic Sobolev-Slobodetskii classes (which are particular cases of Besov or Sobolev classical classes). The main interest of the isotropic procedure is to obtain adaptive results without any restriction on the smoothness parameter.
引用
收藏
页码:1916 / 1947
页数:32
相关论文
共 41 条
[21]   Universal pointwise selection rule in multivariate function estimation [J].
Goldenshluger, Alexander ;
Lepski, Oleg .
BERNOULLI, 2008, 14 (04) :1150-1190
[22]   BEST CONSTANTS IN MOMENT INEQUALITIES FOR LINEAR-COMBINATIONS OF INDEPENDENT AND EXCHANGEABLE RANDOM-VARIABLES [J].
JOHNSON, WB ;
SCHECHTMAN, G ;
ZINN, J .
ANNALS OF PROBABILITY, 1985, 13 (01) :234-253
[23]   SIMPLE BOUNDARY CORRECTION FOR KERNEL DENSITY-ESTIMATION [J].
JONES, MC .
STATISTICS AND COMPUTING, 1993, 3 (03) :135-146
[24]   The asymptotic minimax constant for sup-norm loss in nonparametric density estimation [J].
Korostelev, A ;
Nussbaum, M .
BERNOULLI, 1999, 5 (06) :1099-1118
[25]   Minimal penalty for Goldenshluger-Lepski method [J].
Lacour, C. ;
Massart, P. .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2016, 126 (12) :3774-3789
[26]   SMOOTH ESTIMATORS OF DISTRIBUTION AND DENSITY-FUNCTIONS [J].
LEJEUNE, M ;
SARDA, P .
COMPUTATIONAL STATISTICS & DATA ANALYSIS, 1992, 14 (04) :457-471
[27]   ADAPTIVE ESTIMATION OVER ANISOTROPIC FUNCTIONAL CLASSES VIA ORACLE APPROACH [J].
Lepski, Oleg .
ANNALS OF STATISTICS, 2015, 43 (03) :1178-1242
[28]  
Lepski OV, 1997, ANN STAT, V25, P2512
[30]  
MARRON JS, 1994, J ROY STAT SOC B, V56, P653