Adaptive density estimation on bounded domains

被引:4
作者
Bertin, Karine [1 ]
El Kolei, Salima [2 ]
Klutchnikoff, Nicolas [3 ]
机构
[1] Univ Valparaiso, CIMFAV, Gen Cruz 222, Valparaiso, Chile
[2] UBL, ENSAI, Campus Ker Lann,Rue Blaise Pascal,BP 37203, F-35172 Bruz, France
[3] Univ Rennes, CNRS, IRMAR Inst Rech Math Rennes, UMR 6625, F-35000 Rennes, France
来源
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES | 2019年 / 55卷 / 04期
关键词
Multivariate kernel density estimation; Bounded data; Boundary bias; Adaptive estimation; Oracle inequality; Sobolev-Slobodetskii classes; BANDWIDTH SELECTION; KERNEL ESTIMATORS; SUP-NORM; SOBOLEV; INEQUALITIES; CONSTANT; SPACES; RATES;
D O I
10.1214/18-AIHP938
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We study the estimation, in L-p-norm, of density functions defined on [0, 1](d). We construct a new family of kernel density estimators that do not suffer from the so-called boundary bias problem and we propose a data-driven procedure based on the Goldenshluger and Lepski approach that jointly selects a kernel and a bandwidth. We derive two estimators that satisfy oracle-type inequalities. They are also proved to be adaptive over a scale of anisotropic or isotropic Sobolev-Slobodetskii classes (which are particular cases of Besov or Sobolev classical classes). The main interest of the isotropic procedure is to obtain adaptive results without any restriction on the smoothness parameter.
引用
收藏
页码:1916 / 1947
页数:32
相关论文
共 41 条
[1]  
[Anonymous], 1985, WILEY SERIES PROBABI
[2]  
[Anonymous], 1995, INTERPOLATION THEORY
[3]  
[Anonymous], 1986, MONOGRAPHS STAT APPL, DOI [DOI 10.1007/978-1-4899-3324-9, 10.1007/978-1-4899-3324-9]
[4]  
Asin N., 2016, ADAPTIVE NONPARAMETR
[5]   Thresholding methods to estimate copula density [J].
Autin, F. ;
Le Pennec, E. ;
Tribouley, K. .
JOURNAL OF MULTIVARIATE ANALYSIS, 2010, 101 (01) :200-222
[6]   Minimax exact constant in sup-norm for nonparametric regression with random design [J].
Bertin, K .
JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2004, 123 (02) :225-242
[7]  
Bertin K., 2005, MATH METHODS STAT, V14, P267
[8]   ADAPTIVE ESTIMATION OF A DENSITY FUNCTION USING BETA KERNELS [J].
Bertin, Karine ;
Klutchnikoff, Nicolas .
ESAIM-PROBABILITY AND STATISTICS, 2014, 18 :400-417
[9]   Minimax properties of beta kernel estimators [J].
Bertin, Karine ;
Klutchnikoff, Nicolas .
JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2011, 141 (07) :2287-2297
[10]   KERNEL DENSITY ESTIMATION VIA DIFFUSION [J].
Botev, Z. I. ;
Grotowski, J. F. ;
Kroese, D. P. .
ANNALS OF STATISTICS, 2010, 38 (05) :2916-2957