Stable RNA interference (RNAi) as an option for anti-bcr-abl therapy

被引:54
作者
Scherr, M
Battmer, K
Schultheis, B
Ganser, A
Eder, M
机构
[1] Hannover Med Sch, Dept Hematol & Oncol, D-30623 Hannover, Germany
[2] Univ Heidelberg, Univ Hosp Mannheim, Med Clin 3, D-6800 Mannheim, Germany
关键词
RNA interference; siRNA; lentivirus; gene transfer; bcr-abl;
D O I
10.1038/sj.gt.3302328
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
RNA interference (RNAi) has recently been used for sequence-specific gene silencing of disease-related genes including oncogenes in hematopoietic cells. To characterize its potential therapeutic value, we analyzed different modes to activate RNAi as well as some pharmacokinetic aspects of gene silencing in bcr-abl+cells. Using lentiviral gene transfer of transcription cassettes for anti-bcr-abl shRNAs and red fluorescence protein (RFP) as a quantitative reporter, we demonstrate that stable but not transient RNAi can efficiently deplete bcr-abl+K562 and murine TonB cells from suspension cultures. Importantly, depletion of bcr-abl+cells depends on the dose of lentivirus used for transduction and correlates with the RFP-expression level of transduced target cells: RFP-high K562 cells are eradicated, whereas RFP-low or -intermediate cells may recover after prolonged cell culture. Interestingly, these cells still show reduced bcr-abl mRNA levels, aberrant proliferation kinetics, and enhanced sensitivity to the Bcr-Abl-kinase inhibitor STI571. Quantitative PCR from genomic DNA suggests that more than three lentiviral integrations are required for effective depletion of K562 cells. Finally, we demonstrate that lentivirus-mediated anti-bcr-abl RNAi can inhibit colony formation of primary CD34+ cells from chronic myeloid leukemia patients. These data demonstrate dose-dependent gene silencing by lentivirus-mediated RNAi in bcr-abl+ cells and suggest that stable RNAi may indeed be therapeutically useful in primary hematopoietic cells.
引用
收藏
页码:12 / 21
页数:10
相关论文
共 43 条
[1]   Lentiviral-mediated RNA interference [J].
Abbas-Terki, T ;
Blanco-Bose, W ;
Déglon, N ;
Pralong, W ;
Aebischer, P .
HUMAN GENE THERAPY, 2002, 13 (18) :2197-2201
[2]   Retroviral delivery of small interfering RNA into primary cells [J].
Barton, GM ;
Medzhitov, R .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 (23) :14943-14945
[3]   Side effects of retroviral gene transfer into hematopoietic stem cells [J].
Baum, C ;
Düllmann, J ;
Li, ZX ;
Fehse, B ;
Meyer, J ;
Williams, DA ;
von Kalle, C .
BLOOD, 2003, 101 (06) :2099-2114
[4]  
Bièche I, 1998, INT J CANCER, V78, P661, DOI 10.1002/(SICI)1097-0215(19981123)78:5<661::AID-IJC22>3.3.CO
[5]  
2-9
[6]   Induction of an interferon response by RNAi vectors in mammalian cells [J].
Bridge, AJ ;
Pebernard, S ;
Ducraux, A ;
Nicoulaz, AL ;
Iggo, R .
NATURE GENETICS, 2003, 34 (03) :263-264
[7]   A system for stable expression of short interfering RNAs in mammalian cells [J].
Brummelkamp, TR ;
Bernards, R ;
Agami, R .
SCIENCE, 2002, 296 (5567) :550-553
[8]   Specific inhibition of gene expression by small double-stranded RNAs in invertebrate and vertebrate systems [J].
Caplen, NJ ;
Parrish, S ;
Imani, F ;
Fire, A ;
Morgan, RA .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2001, 98 (17) :9742-9747
[9]   Germline transmission of RNAi in mice [J].
Carmell, MA ;
Zhang, LQ ;
Conklin, DS ;
Hannon, GJ ;
Rosenquist, TA .
NATURE STRUCTURAL BIOLOGY, 2003, 10 (02) :91-92
[10]   Retrovirus-delivered siRNA [J].
Devroe E. ;
Silver P.A. .
BMC Biotechnology, 2 (1)