Fibrations of low genus, I

被引:31
作者
Catanese, Fabrizio
Pignatelli, Roberto
机构
[1] Univ Bayreuth, Lehrstuhl Math 8, D-95447 Bayreuth, Germany
[2] Univ Trent, Dipartimento Matemat, I-38050 Povo, TN, Italy
来源
ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE | 2006年 / 39卷 / 06期
关键词
D O I
10.1016/j.ansens.2006.10.001
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In the present paper we consider fibrations f : S -> B of an algebraic surface over a curve B, with general fibre a curve of genus g. Our main results are: (1) A structure theorem for such fibrations in the case where g = 2. (2) A structure theorem for such fibrations in the case where g = 3, the general fibre is nonhyperelliptic, and each fibre is 2-connected. (3) A theorem giving a complete description of the moduli space of minimal surfaces of general type with p(g) = q = 1, K-S(2) = 3, showing in particular that it has four unirational connected components. (4) Other applications of the two structure theorems. (c) 2006 Elsevier Masson SAS.
引用
收藏
页码:1011 / 1049
页数:39
相关论文
共 43 条
[11]  
Catanese F, 2000, AM J MATH, V122, P1
[12]  
CATANESE F, 1991, PROBLEMS THEORY SURF, P49
[13]  
Catanese F., 2000, COMPLEX ANAL ALGEBRA, P117
[14]  
Catanese F., 1993, J. Algebraic Geom., V2, P389
[15]  
Catanese F., 1999, CONT MATH, V241, P97, DOI DOI 10.1090/C0NM/241/03630
[16]  
CATANESE F, 1996, ISRAEL MATH C P, V9, P109
[17]  
CATANESE F, 1981, P CIME C ALG SURF 19, P269
[18]   Embeddings of curves and surfaces [J].
Catanse, F ;
Franciosi, M ;
Hulek, K ;
Reid, M .
NAGOYA MATHEMATICAL JOURNAL, 1999, 154 :185-220
[19]  
CILIBERTO C, 1997, P S PURE MATH, V62, P57
[20]   Geometry of formal Kuranishi theory [J].
Clemens, H .
ADVANCES IN MATHEMATICS, 2005, 198 (01) :311-365