CLT in functional linear regression models

被引:85
|
作者
Cardot, Herve
Mas, Andre
Sarda, Pascal
机构
[1] Univ Montpellier 2, Inst Modelisat Math Montpellier, F-34095 Montpellier 5, France
[2] CESAER, F-21079 Dijon, France
[3] Univ Toulouse 3, Lab Stat & Probabil, F-31062 Toulouse 4, France
[4] Univ Toulouse 2, EA 2254, GRIMM, F-31058 Toulouse 1, France
关键词
central limit theorem; Hilbertian random variables; functional data analysis; covariance operator; inverse problem; regularization; perturbation theory;
D O I
10.1007/s00440-006-0025-2
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We propose in this work to derive a CLT in the functional linear regression model. The main difficulty is due to the fact that estimation of the functional parameter leads to a kind of ill-posed inverse problem. We consider estimators that belong to a large class of regularizing methods and we first show that, contrary to the multivariate case, it is not possible to state a CLT in the topology of the considered functional space. However, we show that we can get a CLT for the weak topology under mild hypotheses and in particular without assuming any strong assumptions on the decay of the eigenvalues of the covariance operator. Rates of convergence depend on the smoothness of the functional coefficient and on the point in which the prediction is made.
引用
收藏
页码:325 / 361
页数:37
相关论文
共 50 条
  • [1] CLT in functional linear regression models
    Hervé Cardot
    André Mas
    Pascal Sarda
    Probability Theory and Related Fields, 2007, 138 : 325 - 361
  • [2] Correction: CLT in functional linear regression models
    Hervé Cardot
    André Mas
    Pascal Sarda
    Probability Theory and Related Fields, 2023, 187 : 519 - 522
  • [3] CLT in functional linear regression models (vol 138, 325, 2007)
    Cardot, Herve
    Mas, Andre
    Sarda, Pascal
    PROBABILITY THEORY AND RELATED FIELDS, 2023, 187 (1-2) : 519 - 522
  • [4] Clusterwise functional linear regression models
    Li, Ting
    Song, Xinyuan
    Zhang, Yingying
    Zhu, Hongtu
    Zhu, Zhongyi
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2021, 158
  • [5] Robust Functional Linear Regression Models
    Beyaztas, Ufuk
    Shang, Han Lin
    R JOURNAL, 2023, 15 (01): : 212 - 233
  • [6] Linear calibration in functional regression models
    Bolfarine, H
    Lima, CROP
    Sandoval, MC
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 1997, 26 (10) : 2307 - 2328
  • [7] Linear regression models for functional data
    Cardot, Herve
    Sarda, Pascal
    ART OF SEMIPARAMETRICS, 2006, : 49 - +
  • [8] CLT and Lq errors in nonparametric functional regression
    Delsol, Laurent
    COMPTES RENDUS MATHEMATIQUE, 2007, 345 (07) : 411 - 414
  • [9] Varying-coefficient functional linear regression models
    Cardot, Herve
    Sarda, Pascal
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2008, 37 (20) : 3186 - 3203
  • [10] Varying coefficient partially functional linear regression models
    Qing-Yan Peng
    Jian-Jun Zhou
    Nian-Sheng Tang
    Statistical Papers, 2016, 57 : 827 - 841