Surface Plasmon Enhanced Strong Exciton-Photon Coupling in Hybrid Inorganic-Organic Perovskite Nanowires

被引:141
作者
Shang, Qiuyu [1 ,2 ]
Zhang, Shuai [3 ]
Liu, Zhen [1 ]
Chen, Jie [1 ,3 ]
Yang, Pengfei [1 ]
Li, Chun [1 ]
Li, Wei [4 ]
Zhang, Yanfeng [1 ]
Xiong, Qihua [5 ]
Liu, Xinfeng [3 ]
Zhang, Qing [1 ,2 ]
机构
[1] Peking Univ, Coll Engn, Dept Mat Sci & Engn, Beijing 100871, Peoples R China
[2] Peking Univ, Res Ctr Wide Gap Semicond, Beijing 100871, Peoples R China
[3] Natl Ctr Nanosci & Technol, CAS Ctr Excellence Nanosci, CAS Key Lab Standardizat & Measurement Nanotechno, Beijing 100190, Peoples R China
[4] Tsinghua Univ, Dept Phys, Beijing 100084, Peoples R China
[5] Nanyang Technol Univ, Sch Phys & Math Sci, Div Phys & Appl Phys, Singapore 637371, Singapore
基金
新加坡国家研究基金会; 中国国家自然科学基金;
关键词
Surface plasmon; strong light-matter interaction; microcavity; polariton; perovskite; nanowire; OPTICAL-PROPERTIES; ROOM-TEMPERATURE; SEMICONDUCTOR MICROCAVITY; CH3NH3PBBR3; PEROVSKITE; SINGLE-CRYSTALS; SOLAR-CELLS; THIN-FILMS; WAVE-GUIDE; EMISSION; POLARITONS;
D O I
10.1021/acs.nanolett.7b04847
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Manipulating strong light-matter interaction in semiconductor microcavities is crucial for developing high-performance exciton polariton devices with great potential in next-generation all-solid state quantum technologies. In this work, we report surface plasmon enhanced strong exciton-photon interaction in CH3NH3PbBr3 perovskite nanowires. Characteristic anticrossing behaviors, indicating a Rabi splitting energy up to similar to 564 meV, are observed near exciton resonance in hybrid perovskite nanowire/SiO2/Ag cavity at room temperature. The exciton-photon coupling strength is enhanced by similar to 35% on average, which is mainly attributed to surface plasmon induced localized excitation field redistribution. Further, systematic studies on SiO2 thickness and nanowire dimension dependence of exciton-photon interaction are presented. These results provide new avenues to achieve extremely high coupling strengths and push forward the development of electrically pumped and ultralow threshold small lasers.
引用
收藏
页码:3335 / 3343
页数:9
相关论文
共 77 条
  • [1] Optical constants of CH3NH3PbBr3 perovskite thin films measured by spectroscopic ellipsometry
    Alias, Mohd Sharizal
    Dursun, Ibrahim
    Saidaminov, Makhsud I.
    Diallo, Elhadj Marwane
    Mishra, Pawan
    Ng, Tien Khee
    Bakr, Osman M.
    Ooi, Boon S.
    [J]. OPTICS EXPRESS, 2016, 24 (15): : 16586 - 16594
  • [2] Collective fluid dynamics of a polariton condensate in a semiconductor microcavity
    Amo, A.
    Sanvitto, D.
    Laussy, F. P.
    Ballarini, D.
    del Valle, E.
    Martin, M. D.
    Lemaitre, A.
    Bloch, J.
    Krizhanovskii, D. N.
    Skolnick, M. S.
    Tejedor, C.
    Vina, L.
    [J]. NATURE, 2009, 457 (7227) : 291 - U3
  • [3] Superfluidity of polaritons in semiconductor microcavities
    Amo, Alberto
    Lefrere, Jerome
    Pigeon, Simon
    Adrados, Claire
    Ciuti, Cristiano
    Carusotto, Iacopo
    Houdre, Romuald
    Giacobino, Elisabeth
    Bramati, Alberto
    [J]. NATURE PHYSICS, 2009, 5 (11) : 805 - 810
  • [4] Strong-coupling regime for quantum boxes in pillar microcavities:: Theory
    Andreani, LC
    Panzarini, G
    Gérard, JM
    [J]. PHYSICAL REVIEW B, 1999, 60 (19) : 13276 - 13279
  • [5] Biosensing with plasmonic nanosensors
    Anker, Jeffrey N.
    Hall, W. Paige
    Lyandres, Olga
    Shah, Nilam C.
    Zhao, Jing
    Van Duyne, Richard P.
    [J]. NATURE MATERIALS, 2008, 7 (06) : 442 - 453
  • [6] Polariton lasers. Hybrid light-matter lasers without inversion (vol 45, 313001, 2012)
    Bajoni, Daniele
    [J]. JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2012, 45 (40)
  • [7] Bose-einstein condensation of microcavity polaritons in a trap
    Balili, R.
    Hartwell, V.
    Snoke, D.
    Pfeiffer, L.
    West, K.
    [J]. SCIENCE, 2007, 316 (5827) : 1007 - 1010
  • [8] Measuring n and k at the Microscale in Single Crystals of CH3NH3PbBr3 Perovskite
    Brittman, Sarah
    Garnett, Erik C.
    [J]. JOURNAL OF PHYSICAL CHEMISTRY C, 2016, 120 (01) : 616 - 620
  • [9] Burstein E., 2012, CONFINED ELECTRONS P, V340
  • [10] Byrnes T, 2014, NAT PHYS, V10, P803, DOI [10.1038/nphys3143, 10.1038/NPHYS3143]