Thermodynamic and economic evaluation of a small-scale organic Rankine cycle integrated with a concentrating solar collector

被引:35
作者
Ashouri, Milad [1 ]
Astaraei, Fatemeh Razi [1 ]
Ghasempour, Roghaye [1 ]
Ahmadi, M. H. [1 ]
Feidt, Michel [2 ]
机构
[1] Univ Tehran, Fac New Sci & Technol, Renewable Energies & Environm Dept, Tehran, Iran
[2] ENSEM, Lab Energet & Mecan Theor & Appl, 2,Ave Foretde Haye,60604, F-54518 Vandoeuvre Les Nancy, France
关键词
organic Rankine cycle; efficiency; solar collector; economic evaluation; MULTIOBJECTIVE OPTIMIZATION; HEAT-TRANSFER; ENGINE; FLUIDS; STEAM;
D O I
10.1093/ijlct/ctv025
中图分类号
O414.1 [热力学];
学科分类号
摘要
Recently, distributed power systems especially with renewable sources have shown an increasing demand all over the world and have been a technical viable solution to demand growth for electricity. Among these, solar-thermal power plants show a trustworthy source for electricity generation especially for rural areas where small-scale plants are needed. Organic Rankine cycle (ORC) is a suitable power cycle for electricity generation from low-grade heat and has shown a good compatibility with parabolic trough solar collectors (PTCs). In this study, a PTC integrated with an ORC is being studied thermodynamically and economically for small-scale electricity generation up to 100 kW electricity. Four schematics of the cycle including the recuperation and superheating are examined. Effect of superheating and recuperating was investigated on the thermal efficiency and costs of the system. A parametric study shows the effect of key parameters such as turbine inlet temperature and pressure on the characteristics of the system such as net work, thermal efficiency, oil temperature, overall heat transfer coefficient and heat transfer area of shell-and-tube heat exchangers and also on costs of the system. Results show the dependence of the system efficiency and system costs on the operating pressure of heat exchangers. Existence of the Recuperator seems quite effective on increasing the cycle efficiency and, in some cases, lowering the total costs due to lowering the condenser load. A comparison of different working fluids including benzene, butane, pentane, isopentane, R123 and R245fa have been done to cover a wide range of operating pressures and temperatures. Results show that benzene has the best thermodynamic performance among other fluids followed by pentane, isopentane, R123, R245fa and butane. Also, benzene has the highest total cost among other fluids followed by pentane, isopentane, butane, R123 and R245fa. This paper helps to evaluate a solar ORC power plant both thermodynamically and economically.
引用
收藏
页码:54 / 65
页数:12
相关论文
共 24 条
[1]   Thermo-economic multi-objective optimization of solar dish-Stirling engine by implementing evolutionary algorithm [J].
Ahmadi, Mohammad H. ;
Sayyaadi, Hoseyn ;
Mohammadi, Amir H. ;
Barranco-Jimenez, Marco A. .
ENERGY CONVERSION AND MANAGEMENT, 2013, 73 :370-380
[2]   Performance Optimization of a Solar-Driven Multi-Step Irreversible Brayton Cycle Based on a Multi-Objective Genetic Algorithm [J].
Ahmadi, Mohammad Hosein ;
Ahmadi, Mohammad Ali ;
Feidt, Michel .
OIL AND GAS SCIENCE AND TECHNOLOGY-REVUE D IFP ENERGIES NOUVELLES, 2016, 71 (01)
[3]   Designing a solar powered Stirling heat engine based on multiple criteria: Maximized thermal efficiency and power [J].
Ahmadi, Mohammad Hossein ;
Sayyaadi, Hoseyn ;
Dehghani, Saeed ;
Hosseinzade, Hadi .
ENERGY CONVERSION AND MANAGEMENT, 2013, 75 :282-291
[4]   Exergy analysis of parabolic trough solar collectors integrated with combined steam and organic Rankine cycles [J].
Al-Sulaiman, Fahad A. .
ENERGY CONVERSION AND MANAGEMENT, 2014, 77 :441-449
[5]  
[Anonymous], INT J LOW CARBON TEC
[6]  
[Anonymous], THERMOFLOW 19 0
[7]   Performance Evaluation of the Integration Between a Thermo-Photo-Voltaic Generator and an Organic Rankine Cycle [J].
Barbieri, Enrico ;
De Pascale, Andrea ;
Ferrari, Claudio ;
Melino, Francesco ;
Morini, Mirko ;
Peretto, Antonio ;
Pinelli, Michele .
JOURNAL OF ENGINEERING FOR GAS TURBINES AND POWER-TRANSACTIONS OF THE ASME, 2012, 134 (10)
[8]   HEAT TRANSFER AND HYDRAULIC RESISTANCE DURING CONDENSATION OF STEAM IN A HORIZONTAL TUBE AND IN A BUNDLE OF TUBES [J].
BOYKO, LD ;
KRUZHILIN, GN .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 1967, 10 (03) :361-+
[9]  
Butterworth D, 1977, Introduction to heat transfer
[10]   CORRELATION FOR BOILING HEAT TRANSFER TO SATURATED FLUIDS IN CONVECTIVE FLOW [J].
CHEN, JC .
INDUSTRIAL & ENGINEERING CHEMISTRY PROCESS DESIGN AND DEVELOPMENT, 1966, 5 (03) :322-&