The effect of annealing temperature on molecular interactions at the interface of polymer laminates is reported. Depth profiling has been carried out by using confocal Raman microspectroscopy to study poly(acrylonitrile)/poly(vinyl alcohol) (PAN/PVOH) and poly(acrylonitrile)/poly(acrylic acid) (PAN/PAA) laminates. The laminates have been annealed at 65, 75, and 90 degrees C. It is demonstrated that the degree of hydrogen-bonding interaction between the nitrile and alcohol groups near the interfacial region changes between laminates annealed at different temperatures. Increasing the annealing temperature up to near the glass transition temperature, T-g, of both polymers facilitates hydrogen bonding. However, above T-g, as a result of molecular flexibility, weakening of such interactions begins. Due to the lower molecular weight of PAA, and thus greater mobility in comparison with PVOH, the interfacial region of a PAN/ PAA laminate is broader than that of a PAN/PVOH laminate. Hydrogen-bonding interaction between PAN and PAA was not observed. This result is rationalized by the hypothesis that, as a result of intramolecular interaction between the carbonyl and hydroxyl groups of PAA, formation of intermolecular hydrogen bonding has been hindered. In addition, the variations in the full width at half-height (FWHH) of the nu(C drop N) band of a PAN-PVOH blend has been mapped by using the same technique.