Bimetallic Iron-Cobalt Catalysts and Their Applications in Energy-Related Electrochemical Reactions

被引:24
作者
Li, Kai [1 ]
Li, Yang [1 ]
Peng, Wenchao [1 ]
Zhang, Guoliang [1 ]
Zhang, Fengbao [1 ]
Fan, Xiaobin [1 ]
机构
[1] Tianjin Univ, Dept Chem Engn, Lab Adv Nano Struct & Transfer Proc, Tianjin 300354, Peoples R China
基金
中国国家自然科学基金;
关键词
energy conversion; iron-cobalt bimetal catalysts; electrochemical application; hydrogen evolution; oxygen evolution; oxygen reduction; OXYGEN-EVOLUTION ELECTROCATALYSTS; SINGLE-ATOM CATALYSTS; POROUS CARBON; BIFUNCTIONAL ELECTROCATALYSTS; REDUCTION ELECTROCATALYST; NANOPOROUS GRAPHENE; WATER OXIDATION; DOPED CARBON; EFFICIENT; HYDROGEN;
D O I
10.3390/catal9090762
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Since the persistently increasing trend of energy consumption, technologies for renewable energy production and conversion have drawn great attention worldwide. The performance and the cost of electrocatalysts play two crucial roles in the globalization of advanced energy conversion devices. Among the developed technics involving metal catalysts, transition-metal catalysts (TMC) are recognized as the most promising materials due to the excellent properties and stability. Particularly, the iron-cobalt bimetal catalysts exhibit exciting electrochemical properties because of the interior cooperative effects. Herein, we summarize recent advances in iron-cobalt bimetal catalysts for electrochemical applications, especially hydrogen evolution reaction (HER), oxygen evolution reaction (OER), and oxygen reduction reaction (ORR). Moreover, the components and synergetic effects of the composites and catalytic mechanism during reaction processes are highlighted. On the basis of extant catalysts and mechanism, the current issues and prospective outlook of the field are also discussed.
引用
收藏
页数:32
相关论文
共 87 条
[1]   Binary Fe-Co Alloy Nanoparticles Showing Significant Enhancement in Electrocatalytic Activity Compared with Bulk Alloys [J].
Ahmed, Jahangeer ;
Kumar, Bharat ;
Mugweru, Amos M. ;
Trinh, Phong ;
Ramanujachary, Kandalam V. ;
Lofland, Samuel E. ;
Govind ;
Ganguli, Ashok K. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2010, 114 (44) :18779-18784
[2]   Cobalt and iron supported on carbon nanofibers as catalysts for Fischer-Tropsch synthesis [J].
Antonio Diaz, Jose ;
Akhavan, Hasti ;
Romero, Amaya ;
Maria Garcia-Minguillan, Alba ;
Romero, Rubi ;
Giroir-Fendler, A. ;
Luis Valverde, Jose .
FUEL PROCESSING TECHNOLOGY, 2014, 128 :417-424
[3]   Cobalt Iron Hydroxide as a Precious Metal-Free Bifunctional Electrocatalyst for Efficient Overall Water Splitting [J].
Babar, Pravin ;
Lokhande, Abhishek ;
Shin, Hyeong Ho ;
Pawar, Bharati ;
Gang, Myeng Gil ;
Pawar, Sambhaji ;
Kim, Jin Hyeok .
SMALL, 2018, 14 (07)
[4]   Mixed-Valence Single-Atom Catalyst Derived from Functionalized Graphene [J].
Bakandritsos, Aristides ;
Kadam, Ravishankar G. ;
Kumar, Pawan ;
Zoppellaro, Giorgio ;
Medved', Miroslav ;
Tucek, Jiri ;
Montini, Tiziano ;
Tomanec, Ondrej ;
Andryskova, Pavlina ;
Drahos, Bohuslav ;
Varma, Rajender S. ;
Otyepka, Michal ;
Gawande, Manoj B. ;
Fornasiero, Paolo ;
Zboril, Radek .
ADVANCED MATERIALS, 2019, 31 (17)
[5]   Reversible amorphization and the catalytically active state of crystalline Co3O4 during oxygen evolution [J].
Bergmann, Arno ;
Martinez-Moreno, Elias ;
Teschner, Detre ;
Chernev, Petko ;
Gliech, Manuel ;
de Araujo, Jorge Ferreira ;
Reier, Tobias ;
Dau, Holger ;
Strasser, Peter .
NATURE COMMUNICATIONS, 2015, 6
[6]   Cobalt-Iron (Oxy)hydroxide Oxygen Evolution Electrocatalysts: The Role of Structure and Composition on Activity, Stability, and Mechanism [J].
Burke, Michaela S. ;
Kast, Matthew G. ;
Trotochaud, Lena ;
Smith, Adam M. ;
Boettcher, Shannon W. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2015, 137 (10) :3638-3648
[7]   Fe-CoP Electrocatalyst Derived from a Bimetallic Prussian Blue Analogue for Large-Current-Density Oxygen Evolution and Overall Water Splitting [J].
Cao, Li-Ming ;
Hu, Yu-Wen ;
Tang, Shang-Feng ;
Iljin, Andrey ;
Wang, Jia-Wei ;
Zhang, Zhi-Ming ;
Lu, Tong-Bu .
ADVANCED SCIENCE, 2018, 5 (10)
[8]   Synergistic Activity of Co and Fe in Amorphous Cox-Fe-B Catalyst for Efficient Oxygen Evolution Reaction [J].
Chen, Huayu ;
Ouyang, Shuxin ;
Zhao, Ming ;
Li, Yunxiang ;
Ye, Jinhua .
ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (46) :40333-40343
[9]   Co-Fe-P nanotubes electrocatalysts derived from metal-organic frameworks for efficient hydrogen evolution reaction under wide pH range [J].
Chen, Jiahui ;
Liu, Jianwen ;
Xie, Jin-Qi ;
Ye, Huangqing ;
Fu, Xian-Zhu ;
Sun, Rong ;
Wong, Ching-Ping .
NANO ENERGY, 2019, 56 :225-233
[10]   In Situ Electrochemical Oxidation Tuning of Transition Metal Disulfides to Oxides for Enhanced Water Oxidation [J].
Chen, Wei ;
Wang, Haotian ;
Li, Yuzhang ;
Liu, Yayuan ;
Sun, Jie ;
Lee, Sanghan ;
Lee, Jang-Soo ;
Cui, Yi .
ACS CENTRAL SCIENCE, 2015, 1 (05) :244-251