Green Bank Telescope observations of interstellar glycolaldehyde: Low-temperature sugar

被引:122
|
作者
Hollis, JM
Jewell, PR
Lovas, FJ
Remijan, A
机构
[1] NASA, Goddard Space Flight Ctr, Space & Earth Data Comp Div, Greenbelt, MD 20771 USA
[2] Natl Radio Astron Observ, Green Bank, WV 24944 USA
[3] Natl Inst Stand & Technol, Opt Technol Div, Gaithersburg, MD 20899 USA
来源
ASTROPHYSICAL JOURNAL | 2004年 / 613卷 / 01期
基金
美国国家航空航天局; 美国国家科学基金会;
关键词
ISM : abundances; ISM : clouds; ISM : individual (Sagittarius B2(N-LMH)); ISM : molecules; radio lines : ISM;
D O I
10.1086/424927
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Interstellar glycolaldehyde (CH2OHCHO) has been detected with the 100 m Green Bank Telescope (GBT) toward the star-forming region Sagittarius B2(N) by means of the 1(10)-1(01), 2(11)-2(02), 3(12)-3(03), and 4(13)-4(04) rotational transitions at 13.48, 15.18, 17.98, and 22.14 GHz, respectively. An analysis of these four high signal-to-noise ratio rotational transitions yields a glycolaldehyde state temperature of similar to8 K. Previously reported emission-line detections of glycolaldehyde with the NRAO 12 m telescope at millimeter wavelengths (71-103 GHz) are characterized by a state temperature of similar to50 K. By comparison, the GBT detections are surprisingly strong and are seen in emission at 13.48 GHz, emission and absorption at 15.18 GHz, and absorption at 17.98 and 22.14 GHz. We attribute the strong absorption observed by the GBT at the higher frequencies to the correspondingly smaller GBT beams coupling better to the continuum source(s) in Sagittarius B2(N). A possible model for the two-temperature regions of glycolaldehyde is discussed.
引用
收藏
页码:L45 / L48
页数:4
相关论文
共 50 条
  • [41] INSITU OBSERVATIONS OF MARTENSITIC TRANSFORMATIONS WITH A LOW-TEMPERATURE METALLOGRAPHIC APPARATUS
    ZHANG, XM
    CAO, HL
    LI, DH
    LI, YY
    CRYOGENICS, 1990, 30 : 388 - 392
  • [42] Removal of silicon from green liquor with low-temperature precausticizing
    Xia, Xinxing
    Wang, Fang
    Sun, Shan
    Hu, Qian
    TAPPI JOURNAL, 2017, 16 (01): : 17 - 21
  • [43] Low-temperature precausticizing - a hopeful approach for green liquor desilication
    Xia, Xinxing
    Wang, Fang
    Qin, Xiaojing
    Tang, Tingting
    Zhou, Tianwen
    TAPPI JOURNAL, 2017, 16 (02): : 57 - 61
  • [44] Sediments in concentrated green tea during low-temperature storage
    Xu, Yong-Quan
    Chen, Gen-Sheng
    Du, Qi-Zhen
    Que, Fei
    Yuan, Hai-Bo
    Yin, Jun-Feng
    FOOD CHEMISTRY, 2014, 149 : 137 - 143
  • [45] Low-temperature directed crystallization as a realization of Green Chemistry principles
    Eksperiandova, L. P.
    FUNCTIONAL MATERIALS, 2016, 23 (04): : 676 - 681
  • [46] The influence of the sample size on low-temperature processes in green electroceramics
    Stubna, I
    Vozár, L
    INDUSTRIAL CERAMICS, 2005, 25 (02): : 110 - 112
  • [47] Low-Temperature Green Synthesis of Multivalent Manganese Oxide Nanowires
    Veeramani, Harish
    Aruguete, Deborah
    Monsegue, Niven
    Murayama, Mitsuhiro
    Dippon, Urs
    Kappler, Andreas
    Hochella, Michael F.
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2013, 1 (09): : 1070 - 1074
  • [48] Reaction Dynamics in Astrochemistry: Low-Temperature Pathways to Polycyclic Aromatic Hydrocarbons in the Interstellar Medium
    Kaiser, Ralf I.
    Parker, Dorian S. N.
    Mebel, Alexander M.
    ANNUAL REVIEW OF PHYSICAL CHEMISTRY, VOL 66, 2015, 66 : 43 - 67
  • [49] Low-temperature FIR and submillimetre mass absorption coefficient of interstellar silicate dust analogues
    Coupeaud, A.
    Demyk, K.
    Meny, C.
    Nayral, C.
    Delpech, F.
    Leroux, H.
    Depecker, C.
    Creff, G.
    Brubach, J. -B.
    Roy, P.
    ASTRONOMY & ASTROPHYSICS, 2011, 535
  • [50] Observations of free-free and anomalous microwave emission from LDN 1622 with the 100 m Green Bank Telescope
    Harper, S. E.
    Dickinson, C.
    Cleary, K.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2015, 453 (04) : 3375 - 3385