On quantumness in multi-parameter quantum estimation

被引:118
作者
Carollo, Angelo [1 ,2 ]
Spagnolo, Bernardo [1 ,2 ,3 ]
Dubkov, Alexander A. [2 ]
Valenti, Davide [1 ,4 ]
机构
[1] Univ Palermo, Dipartimento Fis & Chim Emilio Segre, Grp Interdisciplinary Theoret Phys, Viale Sci,Ed 18, I-90128 Palermo, Italy
[2] Natl Res Lobachevsky State Univ Nizhni Novgorod, Radiophys Dept, 23 Gagarin Ave, Nizhnii Novgorod 603950, Russia
[3] Ist Nazl Fis Nucl, Sez Catania, Via S Sofia 64, I-90123 Catania, Italy
[4] CNR, IRIB, Via Ugo La Malfa 153, I-90146 Palermo, Italy
来源
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT | 2019年
关键词
quantum criticality; quantum information; statistical inference; NOISE; STABILIZATION;
D O I
10.1088/1742-5468/ab3ccb
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
In this article we derive a measure of quantumness in quantum multi-parameter estimation problems. We can show that the ratio between the mean Uhlmann curvature and the Fisher information provides a figure of merit which estimates the amount of incompatibility arising from the quantum nature of the underlying physical system. This ratio accounts for the discrepancy between the attainable precision in the simultaneous estimation of multiple parameters and the precision predicted by the Cramer-Rao bound. As a testbed for this concept, we consider a quantum many-body system in thermal equilibrium, and explore the quantum compatibility of the model across its phase diagram.
引用
收藏
页数:18
相关论文
共 71 条
  • [1] Aasi J, 2013, NAT PHOTONICS, V7, P613, DOI [10.1038/nphoton.2013.177, 10.1038/NPHOTON.2013.177]
  • [2] Quantum metrology for relativistic quantum fields
    Ahmadi, Mehdi
    Bruschi, David Edward
    Fuentes, Ivette
    [J]. PHYSICAL REVIEW D, 2014, 89 (06)
  • [3] [Anonymous], 2011, PROBABILISTIC STAT A
  • [4] [Anonymous], 2006, ARXIVQUANTPH0602091
  • [5] Precision bounds for gradient magnetometry with atomic ensembles
    Apellaniz, Iagoba
    Urizar-Lanz, Inigo
    Zimboras, Zoltan
    Hyllus, Philipp
    Toth, Geza
    [J]. PHYSICAL REVIEW A, 2018, 97 (05)
  • [6] Optimal Quantum Estimation of the Unruh-Hawking Effect
    Aspachs, Mariona
    Adesso, Gerardo
    Fuentes, Ivette
    [J]. PHYSICAL REVIEW LETTERS, 2010, 105 (15)
  • [7] Quantum information-geometry of dissipative quantum phase transitions
    Banchi, Leonardo
    Giorda, Paolo
    Zanardi, Paolo
    [J]. PHYSICAL REVIEW E, 2014, 89 (02):
  • [8] On critical properties of the Berry curvature in the Kitaev honeycomb model
    Bascone, Francesco
    Leonforte, Luca
    Valent, Davide
    Spagnolo, Bernardo
    Carollo, Angelo
    [J]. JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2019,
  • [9] Finite-temperature geometric properties of the Kitaev honeycomb model
    Bascone, Francesco
    Leonforte, Luca
    Valenti, Davide
    Spagnolo, Bernardo
    Carollo, Angelo
    [J]. PHYSICAL REVIEW B, 2019, 99 (20)
  • [10] Quantum Enhanced Estimation of a Multidimensional Field
    Baumgratz, Tillmann
    Datta, Animesh
    [J]. PHYSICAL REVIEW LETTERS, 2016, 116 (03)