Adaptive space-time isogeometric analysis for parabolic evolution problems

被引:9
作者
Langer, Ulrich [1 ]
Matculevich, Svetlana [1 ]
Repin, Sergey [2 ,3 ]
机构
[1] Johann Radon Inst Computat & Appl Math, Altenberger Str 69, A-4040 Linz, Austria
[2] Univ Jyvaskyla, Jyvaskyla, Finland
[3] Peter Great St Petersburg Polytech Univ, Polytech Skaya 29, St Petersburg, Russia
来源
SPACE-TIME METHODS: APPLICATIONS TO PARTIAL DIFFERENTIAL EQUATIONS | 2019年 / 25卷
基金
奥地利科学基金会;
关键词
parabolic initial-boundary value problems; locally stabilized space-time isogeometric analysis (IgA); a priori and a posteriori error estimates; adaptive IgA; STREAMLINE DIFFUSION METHODS; LOCAL REFINEMENT; ERROR CONTROL; SPLINES; ALGORITHM;
D O I
10.1515/9783110548488-005
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The paper proposes new locally stabilized space-time isogeometric analysis approximations to initial boundary value problems of the parabolic type. Previously, similar schemes (but weighted with a global mesh parameter) have been presented and studied by U. Langer, M. Neumuller, and S. Moore (2016). The current work devises a localized version of this scheme, which is suited for adaptive mesh refinement. We establish coercivity, boundedness, and consistency of the corresponding bilinear form. Using these fundamental properties together with standard approximation error estimates for B-splines and NURBS, we show that the space-time isogeometric analysis solutions generated by the new scheme satisfy asymptotically optimal a priori discretization error estimates. Error indicators used for mesh refinement are based on a posteriori error estimates of the functional type that have been introduced by S. Repin (2002), and later rigorously studied in the context of isogeometric analysis by U. Langer, S. Matculevich, and S. Repin (2017). Numerical results discussed in the paper illustrate an improved convergence of global approximation errors and respective error majorants. They also confirm the local efficiency of the error indicators produced by the error majorants.
引用
收藏
页码:141 / 183
页数:43
相关论文
共 66 条
  • [21] J.-L. Lions' problem concerning maximal regularity of equations governed by non-autonomous forms
    Fackler, Stephan
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2017, 34 (03): : 699 - 709
  • [22] Hierarchical B-spline refinement
    Forsey, David R.
    Bartels, Richard H.
    [J]. Computer Graphics (ACM), 1988, 22 (04): : 205 - 212
  • [23] A posteriori error estimates for approximate solutions of linear parabolic problems
    Gaevskaya, AV
    Repin, SI
    [J]. DIFFERENTIAL EQUATIONS, 2005, 41 (07) : 970 - 983
  • [24] Gander M. J., 2015, Multiple Shooting and Time Domain Decomposition Methods, P69
  • [25] ANALYSIS OF A NEW SPACE-TIME PARALLEL MULTIGRID ALGORITHM FOR PARABOLIC PROBLEMS
    Gander, Martin J.
    Neumueller, Martin
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2016, 38 (04) : A2173 - A2208
  • [26] THB-splines: An effective mathematical technology for adaptive refinement in geometric design and isogeometric analysis
    Giannelli, Carlotta
    Juettler, Bert
    Kleiss, Stefan K.
    Mantzaflaris, Angelos
    Simeon, Bernd
    Speh, Jaka
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2016, 299 : 337 - 365
  • [27] Strongly stable bases for adaptively refined multilevel spline spaces
    Giannelli, Carlotta
    Juettler, Bert
    Speleers, Hendrik
    [J]. ADVANCES IN COMPUTATIONAL MATHEMATICS, 2014, 40 (02) : 459 - 490
  • [28] THB-splines: The truncated basis for hierarchical splines
    Giannelli, Carlotta
    Juettler, Bert
    Speleers, Hendrik
    [J]. COMPUTER AIDED GEOMETRIC DESIGN, 2012, 29 (07) : 485 - 498
  • [29] SPACE-TIME ORIENTED STREAMLINE DIFFUSION METHODS FOR NONLINEAR CONSERVATION-LAWS IN ONE-DIMENSION
    HANSBO, P
    [J]. COMMUNICATIONS IN NUMERICAL METHODS IN ENGINEERING, 1994, 10 (03): : 203 - 215
  • [30] TIME-MULTIPATCH DISCONTINUOUS GALERKIN SPACE-TIME ISOGEOMETRIC ANALYSIS OF PARABOLIC EVOLUTION PROBLEMS
    Hofer, Christoph
    Langer, Ulrich
    Neumueller, Martin
    Toulopoulos, Ioannis
    [J]. ELECTRONIC TRANSACTIONS ON NUMERICAL ANALYSIS, 2018, 49 : 126 - 150