Toxicity of atrazine and its bioaccumulation and biodegradation in a green microalga, Chlamydomonas mexicana

被引:88
作者
Kabra, Akhil N. [1 ]
Ji, Min-Kyu [1 ]
Choi, Jaewon [2 ]
Kim, Jung Rae [3 ]
Govindwar, Sanjay P. [4 ]
Jeon, Byong-Hun [1 ]
机构
[1] Yonsei Univ, Dept Environm Engn, Wonju 220710, South Korea
[2] Korea Water Resources Corp, Korea Inst Water & Environm, Water Anal & Res Ctr, Taejon 306711, South Korea
[3] Pusan Natl Univ, Sch Chem & Biomol Engn, Pusan 609735, South Korea
[4] Shivaji Univ, Dept Biochem, Kolhapur 416004, Maharashtra, India
基金
新加坡国家研究基金会;
关键词
Atrazine; Chlamydomonas mexicana; Bioaccumulation; Biodegradation; Fatty acid; Carbohydrate; ENVIRONMENTAL-FACTORS; CHLORELLA-VULGARIS; OXIDATIVE STRESS; NUTRIENT REMOVAL; WASTE-WATER; FATTY-ACID; ALGAE; DEGRADATION; RESPONSES; BIOMASS;
D O I
10.1007/s11356-014-3157-4
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
This study evaluated the toxicity of herbicide atrazine, along with its bioaccumulation and biodegradation in the green microalga Chlamydomonas mexicana. At low concentration (10 mu g L-1), atrazine had no profound effect on the microalga, while higher concentrations (25, 50, and 100 mu g L-1) imposed toxicity, leading to inhibition of cell growth and chlorophyll a accumulation by 22 %, 33 %, and 36 %, and 13 %, 24 %, and 27 %, respectively. Atrazine 96-h EC50 for C. mexicana was estimated to be 33 mu g L-1. Microalga showed a capability to accumulate atrazine in the cell and to biodegrade the cell-accumulated atrazine resulting in 14-36% atrazine degradation at 10-100 mu g L-1. Increasing atrazine concentration decreased the total fatty acids (from 102 to 75 mg g(-1)) and increased the unsaturated fatty acid content in the microalga. Carbohydrate content increased gradually with the increase in atrazine concentration up to 15 %. This study shows that C. mexicana has the capability to degrade atrazine and can be employed for the remediation of atrazine-contaminated streams.
引用
收藏
页码:12270 / 12278
页数:9
相关论文
共 57 条
[1]  
[Anonymous], 2006, STANDARD METHODS EXA, DOI DOI 10.5860/CHOICE.37-2792
[2]   Toxicity and bioaccumulation of xenobiotic organic compounds in the presence of aqueous suspensions of aggregates of nano-C60 [J].
Baun, A. ;
Sorensen, S. N. ;
Rasmussen, R. F. ;
Hartmann, N. B. ;
Koch, C. B. .
AQUATIC TOXICOLOGY, 2008, 86 (03) :379-387
[3]   Phytotoxicity, bioaccumulation and degradation of isoproturon in green algae [J].
Bi, Yan Fang ;
Miao, Shan Shan ;
Lu, Yi Chen ;
Bin Qiu, Chong ;
Zhou, You ;
Yang, Hong .
JOURNAL OF HAZARDOUS MATERIALS, 2012, 243 :242-249
[4]  
Bischoff HW., 1963, PHYCOLOGICAL STUDIES, V6318, P95, DOI DOI 10.1016/J.FOODRES.2013.07.061
[5]   Atrazine removal from aqueous solutions by nanofiltration [J].
Bodalo, A. ;
Leon, G. ;
Hidalgo, A. M. ;
Gomez, M. ;
Murcia, M. D. ;
Blanco, P. .
DESALINATION AND WATER TREATMENT, 2010, 13 (1-3) :143-148
[6]   Microalgae-Novel Highly Efficient Starch Producers [J].
Branyikova, Irena ;
Marsalkova, Barbora ;
Doucha, Jiri ;
Branyik, Tomas ;
Bisova, Katerina ;
Zachleder, Vilem ;
Vitova, Milada .
BIOTECHNOLOGY AND BIOENGINEERING, 2011, 108 (04) :766-776
[7]   Boosting Autofermentation Rates and Product Yields with Sodium Stress Cycling: Application to Production of Renewable Fuels by Cyanobacteria [J].
Carrieri, Damian ;
Momot, Dariya ;
Brasg, Ian A. ;
Ananyev, Gennady ;
Lenz, Oliver ;
Bryant, Donald A. ;
Dismukes, G. Charles .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2010, 76 (19) :6455-6462
[8]  
Cherry JH, 2004, MOLECULAR BIOLOGY AND BIOTECHNOLOGY OF PLANT ORGANELLES: CHLOROPLASTS AND MITOCHONDRIA, P513, DOI 10.1007/978-1-4020-3166-3_18
[9]   Ultrasonic destruction of pesticide contaminants in slurries [J].
Collings, A. F. ;
Gwan, P. B. .
ULTRASONICS SONOCHEMISTRY, 2010, 17 (01) :1-3
[10]   Biofixation of carbon dioxide by Spirulina sp and Scenedesmus obliquus cultivated in a three-stage serial tubular photobioreactor [J].
de Morais, Michele Greque ;
Vieira Costa, Jorge Alberto .
JOURNAL OF BIOTECHNOLOGY, 2007, 129 (03) :439-445