Low-field vortex melting in a single crystal of Ba0.6K0.4Fe2As2

被引:6
作者
Kumar, Ankit [1 ]
Ghosh, Sayantan [1 ]
Tamegai, Tsuyoshi [2 ]
Banerjee, S. S. [1 ]
机构
[1] Indian Inst Technol, Dept Phys, Kanpur 208016, Uttar Pradesh, India
[2] Univ Tokyo, Dept Appl Phys, Bunkyo Ku, Tokyo 1138656, Japan
关键词
FLUX-LINE-LATTICE; PHASE-TRANSITIONS; ANOMALOUS MAGNETIZATION; CRITICAL FLUCTUATIONS; THERMAL FLUCTUATIONS; SCALING BEHAVIOR; VORTICES; BI2SR2CACU2O8; DISORDER; DIAGRAM;
D O I
10.1103/PhysRevB.101.014502
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Theoretically, the vortex melting phenomenon occurs at both low and high magnetic fields at a fixed temperature. While the high-field melting has been extensively investigated in high-T-c cuprates, the low-field melting phenomena in the presence of disorder has not been well explored. Using bulk magnetization measurements and a high-sensitivity differential magneto-optical imaging technique, we detect a low-field vortex melting phenomenon in a single crystal of Ba0.6K0.4Fe2As2. The low-field melting is accompanied with a significant change in local magnetization, similar to 3 G, which decreases with increasing applied field. The observed vortex melting phenomenon is traced on a field-temperature phase diagram, which lies very close to theoretically predicted Lindemann criteria based low-field melting line. Our analysis shows a Lindemann number c(L) = 0.14 associated with the low-field melting. Imaging of low-field vortex melting features shows that the process nucleates via formation of extended fingerlike projections which spreads across the sample with increasing field or temperature, before entering into an interaction-dominated vortex solid phase regime. Magnetization scaling analysis and angular dependence of bulk magnetization hysteresis loop shows extended pins naturally present in the sample. These defects create a low-field glassy vortex phase sustaining a finite critical current present in the phase diagram below the low-field liquid phase. We construct a vortex matter phase diagram, which identifies boundaries demarcating a low-field glassy vortex state from a dilute vortex liquid phase and a weakly interacting solid phase above it. All these phases are shown to be present well below the interaction dominated vortex state shown in the phase diagram.
引用
收藏
页数:11
相关论文
共 81 条
[1]  
Abrikosov A., 1957, Zh. eksp. teor. fiz. Sov. Phys. JETP, V32, P1442
[2]   'Inverse' melting of a vortex lattice [J].
Avraham, N ;
Khaykovich, B ;
Myasoedov, Y ;
Rappaport, M ;
Shtrikman, H ;
Feldman, DE ;
Tamegai, T ;
Kes, PH ;
Li, M ;
Konczykowski, M ;
van der Beek, K ;
Zeldov, E .
NATURE, 2001, 411 (6836) :451-454
[3]   Peak effect, plateau effect, and fishtail anomaly:: The reentrant amorphization of vortex matter in 2H-NbSe2 [J].
Banerjee, SS ;
Ramakrishnan, S ;
Grover, AK ;
Ravikumar, G ;
Mishra, PK ;
Sahni, VC ;
Tomy, CV ;
Balakrishnan, G ;
Paul, DM ;
Gammel, PL ;
Bishop, DJ ;
Bucher, E ;
Higgins, MJ ;
Bhattacharya, S .
PHYSICAL REVIEW B, 2000, 62 (17) :11838-11845
[4]   Melting of "porous" vortex matter [J].
Banerjee, SS ;
Soibel, A ;
Myasoedov, Y ;
Rappaport, M ;
Zeldov, E ;
Menghini, M ;
Fasano, Y ;
de la Cruz, F ;
van der Beek, CJ ;
Konczykowski, M ;
Tamegai, T .
PHYSICAL REVIEW LETTERS, 2003, 90 (08) :4
[5]   MAGNETIZATION OF HIGH-FIELD SUPERCONDUCTORS [J].
BEAN, CP .
REVIEWS OF MODERN PHYSICS, 1964, 36 (1P1) :31-+
[6]   VORTICES IN HIGH-TEMPERATURE SUPERCONDUCTORS [J].
BLATTER, G ;
FEIGELMAN, MV ;
GESHKENBEIN, VB ;
LARKIN, AI ;
VINOKUR, VM .
REVIEWS OF MODERN PHYSICS, 1994, 66 (04) :1125-1388
[7]   QUANTUM-STATISTICAL MECHANICS OF VORTICES IN HIGH-TEMPERATURE SUPERCONDUCTORS [J].
BLATTER, G ;
IVLEV, BI .
PHYSICAL REVIEW B, 1994, 50 (14) :10272-10286
[8]   Low-field phase diagram of layered superconductors: The role of electromagnetic coupling [J].
Blatter, G ;
Geshkenbein, V ;
Larkin, A ;
Nordborg, H .
PHYSICAL REVIEW B, 1996, 54 (01) :72-75
[9]   Two regimes of vortex penetration into platelet-shaped type-II superconductors [J].
Brandt, E. H. ;
Mikitik, G. P. ;
Zeldov, E. .
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS, 2013, 117 (03) :439-448
[10]   Geometric barrier and current string in type-II superconductors obtained from continuum electrodynamics [J].
Brandt, EH .
PHYSICAL REVIEW B, 1999, 59 (05) :3369-3372