Sparse and Balanced MDS Codes Over Small Fields

被引:2
作者
Chen, Tingting [1 ]
Zhang, Xiande [2 ]
机构
[1] Univ Sci & Technol China, Sch Cyber Secur, Hefei 230026, Anhui, Peoples R China
[2] Univ Sci & Technol China, Sch Math Sci, Hefei 230026, Anhui, Peoples R China
关键词
MDS codes; Reed-Solomon codes; finite fields; constrained generator matrices; GENERATOR MATRICES;
D O I
10.1109/TIT.2022.3162524
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Maximum Distance Separable (MDS) codes with a sparse and balanced generator matrix are appealing in distributed storage systems for balancing and minimizing the computational load. Such codes have been constructed via Reed-Solomon codes over large fields. In this paper, we focus on small fields. We prove that there exists an [n, k](q) MDS code that has a sparse and balanced generator matrix for any q >= n - 1 provided that n <= 2k , by designing several algorithms with complexity running in polynomial time in k and n . For the case n > 2k , we give some constructions for q = n = p(s) and k = p(e)m based on sumsets, when e <= s - 2 and m <= p - 1 , or e = s - 1 and m<p/2.
引用
收藏
页码:5112 / 5125
页数:14
相关论文
共 24 条
[1]  
[Anonymous], 1983, The Theory of Error-Correcting Codes
[2]   Arcs in finite projective spaces [J].
Ball, Simeon ;
Lavrauw, Michel .
EMS SURVEYS IN MATHEMATICAL SCIENCES, 2019, 6 (1-2) :133-172
[3]  
Chen T., 2021, CODE SPARSE BALANCED
[4]   On Simple Multiple Access Networks [J].
Dau, Son Hoang ;
Song, Wentu ;
Yuen, Chau .
IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, 2015, 33 (02) :236-249
[5]  
Dau SH, 2014, IEEE INT SYMP INFO, P1787, DOI 10.1109/ISIT.2014.6875141
[6]  
Dau SH, 2013, IEEE INT SYMP INFO, P1889, DOI 10.1109/ISIT.2013.6620554
[7]  
Dickson L. E., 1952, History of Theory of Numbers, V1
[8]  
Effros M., 2015, 1 BANFF INT RES STAT
[9]   Reed-Solomon Codes Over Small Fields With Constrained Generator Matrices [J].
Greaves, Gary ;
Syatriadi, Jeven .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2019, 65 (08) :4764-4770
[10]   Sparse and Balanced Reed-Solomon and Tamo-Barg Codes [J].
Halbawi, Wael ;
Liu, Zihan ;
Duursma, Iwan M. ;
Hoang Dau ;
Hassibi, Babak .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2019, 65 (01) :118-130