Convolutional neural network with median layers for denoising salt-and-pepper contaminations

被引:23
作者
Liang, Luming [1 ]
Deng, Seng [2 ]
Gueguen, Lionel [3 ]
Wei, Mingqiang [2 ]
Wu, Xinming [4 ]
Qin, Jing [5 ]
机构
[1] Microsoft Appl Sci Grp, Redmond, WA 98052 USA
[2] Nanjing Univ Aeronaut & Astronaut, Sch Comp Sci & Technol, Nanjing, Peoples R China
[3] Amazon, Denver, CO USA
[4] Univ Sci & Technol China, Sch Earth & Space Sci, Hefei, Peoples R China
[5] Hong Kong Polytech Univ, Ctr Smart Hlth, Sch Nursing, Hong Kong, Peoples R China
关键词
Median layer; Deep neural network; Salt-and-pepper noise; Image processing; REMOVAL; FILTER;
D O I
10.1016/j.neucom.2021.02.010
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We propose a deep fully convolutional neural network with a new type of layer, named median layer, to restore images contaminated by salt-and-pepper (s&p) noise. A median layer simply performs median filtering on all feature channels. By adding this kind of layer into some widely used fully convolutional deep neural networks, we develop an end-to-end network that removes extremely high-level s&p noise with -out performing any non-trivial preprocessing tasks. Experiments show that inserting median layers into a simple fully-convolutional network with the L-2 loss significantly boosts signal-to-noise ratio. Quantitative comparisons testify that our network outperforms the state-of-the-art methods with a lim-ited amount of training data. (C) 2021 Elsevier B.V. All rights reserved.
引用
收藏
页码:26 / 35
页数:10
相关论文
共 19 条
  • [1] Burger HC, 2012, PROC CVPR IEEE, P2392, DOI 10.1109/CVPR.2012.6247952
  • [2] Denoising convolutional neural network with mask for salt and pepper noise
    Chen, Jiuning
    Li, Fang
    [J]. IET IMAGE PROCESSING, 2019, 13 (13) : 2604 - 2613
  • [3] PARIGI: a Patch-based Approach to Remove Impulse-Gaussian Noise from Images
    Delon, Julie
    Desolneux, Agnes
    Guillemot, Thierry
    [J]. IMAGE PROCESSING ON LINE, 2016, 6 : 130 - 154
  • [4] Image Super-Resolution Using Deep Convolutional Networks
    Dong, Chao
    Loy, Chen Change
    He, Kaiming
    Tang, Xiaoou
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2016, 38 (02) : 295 - 307
  • [5] The Pascal Visual Object Classes (VOC) Challenge
    Everingham, Mark
    Van Gool, Luc
    Williams, Christopher K. I.
    Winn, John
    Zisserman, Andrew
    [J]. INTERNATIONAL JOURNAL OF COMPUTER VISION, 2010, 88 (02) : 303 - 338
  • [6] Farhadi A., CORR ABS 180402767 A
  • [7] Fu B., 2018, MULTIMEDIA TOOLS APP, V77, P1
  • [8] FAST 2-DIMENSIONAL MEDIAN FILTERING ALGORITHM
    HUANG, TS
    YANG, GJ
    TANG, GY
    [J]. IEEE TRANSACTIONS ON ACOUSTICS SPEECH AND SIGNAL PROCESSING, 1979, 27 (01): : 13 - 18
  • [9] Learning deep CNNs for impulse noise removal in images
    Jin, Lianghai
    Zhang, Wenhua
    Ma, Guangzhi
    Song, Enmin
    [J]. JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2019, 62 : 193 - 205
  • [10] Lehtinen J, 2018, PR MACH LEARN RES, V80