Dataset shift quantification for credit card fraud detection

被引:13
作者
Lucas, Yvan [1 ,2 ]
Portier, Pierre-Edouard [1 ]
Laporte, Lea [1 ]
Calabretto, Sylvie [1 ]
He-Guelton, Liyun [3 ]
Oble, Frederic [3 ]
Granitzer, Michael [2 ]
机构
[1] LIRIS, UMR5205, Lyon, France
[2] Univ Passau, Passau, Germany
[3] Worldline Lyon, Lyon, France
来源
2019 IEEE SECOND INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND KNOWLEDGE ENGINEERING (AIKE) | 2019年
关键词
Machine Learning; Credit Card Fraud Detection; Concept Drift; Dataset Shift; Random Forest;
D O I
10.1109/AIKE.2019.00024
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Machine learning and data mining techniques have been used extensively in order to detect credit card frauds. However purchase behaviour and fraudster strategies may change over time. This phenomenon is named dataset shift [1] or concept drift in the domain of fraud detection [2]. In this paper, we present a method to quantify day-by-day the dataset shift in our face-to-face credit card transactions dataset (card holder located in the shop). In practice, we classify the days against each other and measure the efficiency of the classification. The more efficient the classification, the more different the buying behaviour between two days, and vice versa. Therefore, we obtain a distance matrix characterizing the dataset shift. After an agglomerative clustering of the distance matrix, we observe that the dataset shift pattern matches the calendar events for this time period (holidays, week-ends, etc). We then incorporate this dataset shift knowledge in the credit card fraud detection task as a new feature. This leads to a small improvement of the detection.
引用
收藏
页码:97 / 100
页数:4
相关论文
共 10 条
[1]  
Abdallah Aisha, 2016, J NETWORK COMPUTER A, V68
[2]  
[Anonymous], 2012, PATTERN RECOGNITION
[3]  
Bahnsen A. C, 2016, EXPERT SYSTEMS APPL
[4]  
Bolton R. J., 2001, CREDIT SCORING CREDI
[5]  
Gao J, 2007, INT C DAT MIN SIAM 2
[6]  
Jurgovsky J, EXPERT SYSTEMS APPL
[7]  
Lucas Y, 2019, 34 S APPL COMP
[8]  
Pozzolo A. D, 2014, EXPERT SYSTEMS APPL
[9]  
Pozzolo A. D, 2015, IEEE IJCNN 2015
[10]  
Whitrow C, 2008, DATA MINING KNOWLEDG, V18