Gauge theory and mirror symmetry

被引:0
|
作者
Teleman, Constantin [1 ]
机构
[1] Univ Calif Berkeley, Dept Math, Berkeley, CA 94720 USA
来源
PROCEEDINGS OF THE INTERNATIONAL CONGRESS OF MATHEMATICIANS (ICM 2014), VOL II | 2014年
关键词
Gauge theory; holomorphic symplectic space; Toda system; flag variety; TOPOLOGICAL FIELD-THEORY; QUANTUM COHOMOLOGY; HOMOLOGY;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Outlined here is a description of equivariance in the world of 2-dimensional extended topological quantum field theories, under a topological action of compact Lie groups. In physics language, I am gauging the theories - coupling them to a principal bundle on the surface world-sheet. I describe the data needed to gauge the theory, as well as the computation of the gauged theory, the result of integrating over all bundles. The relevant theories are 'A-models', such as arise from the Gromov-Witten theory of a symplectic manifold with Hamiltonian group action, and the mathematical description starts with a group action on the generating category (the Fukaya category, in this example) which is factored through the topology of the group. Their mirror description involves holomorphic symplectic manifolds and Lagrangians related to the Langlands dual group. An application recovers the complex mirrors of flag varieties proposed by Rietsch.
引用
收藏
页码:1309 / 1332
页数:24
相关论文
共 50 条
  • [41] A Lorentz gauge theory of gravity
    Borzou, Ahmad
    CLASSICAL AND QUANTUM GRAVITY, 2016, 33 (02)
  • [42] Linearized gravity as a gauge theory
    Nieto, JA
    MODERN PHYSICS LETTERS A, 2005, 20 (02) : 135 - 144
  • [43] Gauge theory by canonical transformations
    Koenigstein, Adrian
    Kirsch, Johannes
    Stoecker, Horst
    Struckmeier, Juergen
    Vasak, David
    Hanauske, Matthias
    INTERNATIONAL JOURNAL OF MODERN PHYSICS E-NUCLEAR PHYSICS, 2016, 25 (07)
  • [44] Supersymmetric N=2 gauge theory with arbitrary gauge group
    Kuchiev, Michael Yu.
    NUCLEAR PHYSICS B, 2010, 838 (03) : 331 - 357
  • [45] FEYNMAN PERTURBATION THEORY FOR GAUGE THEORY ON TRANSVERSE LATTICE
    Karnevskiy, M. S.
    Paston, S. A.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2010, 25 (18-19): : 3621 - 3640
  • [46] Perturbative Gauge Theory as a String Theory in Twistor Space
    Edward Witten
    Communications in Mathematical Physics, 2004, 252 : 189 - 258
  • [47] Cellular gauge symmetry and the Li organization principle: General considerations
    Tozzi, Arturo
    Peters, James F.
    Navarro, Jorge
    Kun, Wu
    Lin, Bi
    Marijuan, Pedro C.
    PROGRESS IN BIOPHYSICS & MOLECULAR BIOLOGY, 2017, 131 : 141 - 152
  • [48] An integral structure in quantum cohomology and mirror symmetry for toric orbifolds
    Iritani, Hiroshi
    ADVANCES IN MATHEMATICS, 2009, 222 (03) : 1016 - 1079
  • [49] GAUGE THEORY AND TWO LEVEL SYSTEMS
    Bruno, A.
    Capolupo, A.
    Kak, S.
    Raimondo, G.
    Vitiello, G.
    MODERN PHYSICS LETTERS B, 2011, 25 (20): : 1661 - 1670
  • [50] Gauge Theory Solitons on the Noncommutative Cylinder
    S. V. Demidov
    S. L. Dubovsky
    V. A. Rubakov
    S. M. Sibiryakov
    Theoretical and Mathematical Physics, 2004, 138 : 269 - 283