Electron transport and electric field simulations in two-phase detectors with THGEM electrodes

被引:12
|
作者
Bondar, A.
Buzulutskov, A.
Frolov, E. [1 ]
Oleynikov, V.
Shemyakina, E.
Sokolov, A.
机构
[1] Budker Inst Nucl Phys SB RAS, Lavrentiev Ave 11, Novosibirsk 630090, Russia
来源
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT | 2019年 / 943卷
基金
俄罗斯基础研究基金会;
关键词
Two-phase detectors; THGEM; Electric field simulation; Liquid argon; Dark matter; DIFFUSION; READOUT; XENON;
D O I
10.1016/j.nima.2019.162431
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
One of the main features of two-phase detectors with electroluminescence (EL) gap being developed in our laboratory for dark matter search is the extensive use of THGEMs (Thick Gas Electron Multipliers). In various versions of the detector, the THGEMs are used as electrodes in the gas and liquid phases to form the drift, electron emission and EL regions, as well as for avalanche amplification of a signal in the gas phase. In this work the simulations of the electric field and electron transport through such THGEM electrodes were performed. In the liquid phase, these simulations allowed to determine the optimal parameters, such as the hole diameter of THGEM and applied voltage across it, that can provide effective transmission of the electrons from the drift region to that of the EL gap. In the gas phase, the effect of the THGHEM voltage on the electric field uniformity in the EL gap was studied.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] Phase-field analysis of a ternary two-phase diffusion couple with multiple analytical solutions
    Heulens, J.
    Blanpain, B.
    Moelans, N.
    ACTA MATERIALIA, 2011, 59 (10) : 3946 - 3954
  • [22] A phase field study of microstructural changes due to the Kirkendall effect in two-phase diffusion couples
    Wu, K
    Morral, JE
    Wang, Y
    ACTA MATERIALIA, 2001, 49 (17) : 3401 - 3408
  • [23] A positivity preserving and conservative variational scheme for phase-field modeling of two-phase flows
    Joshi, Vaibhav
    Jaiman, Rajeev K.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2018, 360 : 137 - 166
  • [24] DIGITAL CORE: TEMPERATURE FIELD INFLUENCE ON TWO-PHASE FILTRATION OF FLUIDS IN ROCKS
    Katanov, Yuri E.
    Yagafarov, Alik K.
    Aristov, Artem I.
    BULLETIN OF THE TOMSK POLYTECHNIC UNIVERSITY-GEO ASSETS ENGINEERING, 2023, 334 (10): : 108 - 118
  • [25] Charge transport in two-dimensional disordered systems with an external electric field
    Dutra, R. F.
    Santos Junior, M. S.
    Messias, D.
    Mendes, C. V. C.
    Sales, M. O.
    de Moura, F. A. B. F.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2023, 34 (08):
  • [26] A model for transport of interface-confined scalars and insoluble surfactants in two-phase flows
    Jain, Suhas S.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2024, 515
  • [27] Numerical modeling of two-phase fluid flow and oil slick transport in estuarine water
    M. Nagheeby
    M. Kolahdoozan
    International Journal of Environmental Science & Technology, 2010, 7 : 771 - 784
  • [28] Numerical modeling of two-phase fluid flow and oil slick transport in estuarine water
    Nagheeby, M.
    Kolahdoozan, M.
    INTERNATIONAL JOURNAL OF ENVIRONMENTAL SCIENCE AND TECHNOLOGY, 2010, 7 (04) : 771 - 784
  • [29] Electron transport with the McKelvey-Shockley flux method: The effect of electric field and electron-phonon scattering
    Zhu, Qinxin
    Maassen, Jesse
    JOURNAL OF APPLIED PHYSICS, 2022, 132 (07)
  • [30] SiPM-matrix readout of two-phase argon detectors using electroluminescence in the visible and near infrared range
    Aalseth, C. E.
    Abdelhakim, S.
    Agnes, P.
    Ajaj, R.
    Albuquerque, I. F. M.
    Alexander, T.
    Alici, A.
    Alton, A. K.
    Amaudruz, P.
    Ameli, F.
    Anstey, J.
    Antonioli, P.
    Arba, M.
    Arcelli, S.
    Ardito, R.
    Arnquist, I. J.
    Arpaia, P.
    Asner, D. M.
    Asunskis, A.
    Ave, M.
    Back, H. O.
    Barbaryan, V.
    Barrado Olmedo, A.
    Batignani, G.
    Bisogni, M. G.
    Bocci, V.
    Bondar, A.
    Bonfini, G.
    Bonivento, W.
    Borisova, E.
    Bottino, B.
    Boulay, M. G.
    Bunker, R.
    Bussino, S.
    Buzulutskov, A.
    Cadeddu, M.
    Cadoni, M.
    Caminata, A.
    Canci, N.
    Candela, A.
    Cantini, C.
    Caravati, M.
    Cariello, M.
    Carnesecchi, F.
    Castellani, A.
    Castello, P.
    Cavalcante, P.
    Cavazza, D.
    Cavuoti, S.
    Cebrian, S.
    EUROPEAN PHYSICAL JOURNAL C, 2021, 81 (02):