Modeling Neonatal EEG Using Multi-Output Gaussian Processes

被引:3
作者
Caro, Victor [1 ,2 ]
Ho, Jou-Hui [3 ]
Witting, Scarlet [4 ,5 ]
Tobar, Felipe [1 ,6 ]
机构
[1] Univ Chile, Initiat Data & Artificial Intelligence, Santiago 8370456, Chile
[2] Univ Chile, Dept Comp Sci, Santiago 8370456, Chile
[3] Univ Chile, Dept Elect Engn, Santiago 8370448, Chile
[4] Hosp Clin San Borja Arriaran, Pediat Neurol, Santiago 8360160, Chile
[5] Univ Chile, Fac Med, Pediat Dept, Cent Campus, Santiago 8380453, Chile
[6] Univ Chile, Ctr Math Modelling, Santiago 8370456, Chile
关键词
Electroencephalography; Pediatrics; Brain modeling; Kernel; Gaussian processes; Data models; Artificial neural networks; multi-output; data imputation; seizure detection; spectral mixture kernels; SEIZURE DETECTION; NEWBORN EEG; CLASSIFICATION;
D O I
10.1109/ACCESS.2022.3159653
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Neonatal seizures are sudden events in brain activity with detrimental effects in neurological functions usually related to epileptic fits. Though neonatal seizures can be identified from electroencephalography (EEG), this is a challenging endeavour since expert visual inspection of EEG recordings is time consuming and prone to errors due the data's nonstationarity and low signal-to-noise ratio. Towards the greater aim of automatic clinical decision making and monitoring, we propose a multi-output Gaussian process (MOGP) framework for neonatal EEG modelling. In particular, our work builds on the multi-output spectral mixture (MOSM) covariance kernel and shows that MOSM outperforms other commonly-used covariance functions in the literature when it comes to data imputation and hyperparameter-based seizure detection. To the best of our knowledge, our work is the first attempt at modelling and classifying neonatal EEG using MOGPs. Our main contributions are: i) the development of an MOGP-based framework for neonatal EEG analysis; ii) the experimental validation of the MOSM covariance kernel on real-world neonatal EEG for data imputation; and iii) the design of features for EEG based on MOSM hyperparameters and their validation for seizure detection (classification) in a patient specific approach.
引用
收藏
页码:32912 / 32927
页数:16
相关论文
共 60 条
[1]   Design and implementation of a multi-sensor newborn EEG seizure and background model with inter-channel field characterization [J].
Al-Sa'd, Mohammad F. ;
Boashash, Boualem .
DIGITAL SIGNAL PROCESSING, 2019, 90 :71-99
[2]  
Alix J.J., 2017, PAEDIAT CHILD HLTH, V27, P135, DOI [DOI 10.1016/J.PAED.2016.11.003, 10.1016/j.paed.2016.11.003]
[3]   Cognitive Outcome Prediction in Infants With Neonatal Hypoxic-Ischemic Encephalopathy Based on Functional Connectivity and Complexity of the Electroencephalography Signal [J].
Alotaibi, Noura ;
Bakheet, Dalal ;
Konn, Daniel ;
Vollmer, Brigitte ;
Maharatna, Koushik .
FRONTIERS IN HUMAN NEUROSCIENCE, 2022, 15
[4]  
Altamirano M., 2022, INT C ART INT STAT, P1
[5]   Kernels for Vector-Valued Functions: A Review [J].
Alvarez, Mauricio A. ;
Rosasco, Lorenzo ;
Lawrence, Neil D. .
FOUNDATIONS AND TRENDS IN MACHINE LEARNING, 2012, 4 (03) :195-266
[6]  
[Anonymous], 2009, ARTIF INTELL
[7]   Real-time Inference and Detection of Disruptive EEG Networks for Epileptic Seizures [J].
Bomela, Walter ;
Wang, Shuo ;
Chou, Chun-An ;
Li, Jr-Shin .
SCIENTIFIC REPORTS, 2020, 10 (01)
[8]   Sparse multi-output Gaussian processes for online medical time series prediction [J].
Cheng, Li-Fang ;
Dumitrascu, Bianca ;
Darnell, Gregory ;
Chivers, Corey ;
Draugelis, Michael ;
Li, Kai ;
Engelhardt, Barbara E. .
BMC MEDICAL INFORMATICS AND DECISION MAKING, 2020, 20 (01)
[9]   Classification of EEG signals using normal inverse Gaussian parameters in the dual-tree complex wavelet transform domain for seizure detection [J].
Das, Anindya Bijoy ;
Bhuiyan, Mohammed Imamul Hassan ;
Alam, S. M. Shafiul .
SIGNAL IMAGE AND VIDEO PROCESSING, 2016, 10 (02) :259-266
[10]   MOGPTK: The multi-output Gaussian process toolkit [J].
de Wolff, Taco ;
Cuevas, Alejandro ;
Tobar, Felipe .
NEUROCOMPUTING, 2021, 424 :49-53