All the Lagrangian relative equilibria of the curved 3-body problem have equal masses

被引:13
作者
Diacu, Florin [1 ,2 ]
Popa, Sergiu [2 ]
机构
[1] Univ Victoria, Pacific Inst Math Sci, Victoria, BC V8W 2Y2, Canada
[2] Univ Victoria, Dept Math & Stat, Victoria, BC V8W 2Y2, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
N-BODY PROBLEM; POLYGONAL HOMOGRAPHIC ORBITS; CONSTANT CURVATURE; INTRINSIC APPROACH; SPACES; EXISTENCE; STABILITY;
D O I
10.1063/1.4900833
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider the 3-body problem in 3-dimensional spaces of nonzero constant Gaussian curvature and study the relationship between the masses of the Lagrangian relative equilibria, which are orbits that form a rigidly rotating equilateral triangle at all times. There are three classes of Lagrangian relative equilibria in 3-dimensional spaces of constant nonzero curvature: positive elliptic and positive elliptic-elliptic, on 3-spheres, and negative elliptic, on hyperbolic 3-spheres. We prove that all these Lagrangian relative equilibria exist only for equal values of the masses. (C) 2014 AIP Publishing LLC.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] PERIODIC ORBITS FOR THE PERTURBED PLANAR CIRCULAR RESTRICTED 3-BODY PROBLEM
    Abouelmagd, Elbaz, I
    Garcia Guirao, Juan Luis
    Libre, Jaume L.
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2019, 24 (03): : 1007 - 1020
  • [32] A continuum of periodic solutions to the planar four-body problem with two pairs of equal masses
    Ouyang, Tiancheng
    Xie, Zhifu
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2018, 264 (07) : 4425 - 4455
  • [33] On the existence of the relative equilibria of a rigid body in the J 2 problem
    Wang, Yue
    Xu, Shijie
    Tang, Liang
    ASTROPHYSICS AND SPACE SCIENCE, 2014, 353 (02) : 425 - 440
  • [34] Relative equilibria in the unrestricted problem of a sphere and symmetric rigid body
    Vereshchagin, Mikhail
    Maciejewski, Andrzej J.
    Gozdziewski, Krzysztof
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2010, 403 (02) : 848 - 858
  • [35] Stability of relative equilibria in the full two-body problem
    Scheeres, DJ
    ASTRODYNAMICS, SPACE MISSIONS, AND CHAOS, 2004, 1017 : 81 - 94
  • [36] The Yarkovsky effect in generalized photogravitational 3-body problem
    Ershkov, Sergey V.
    PLANETARY AND SPACE SCIENCE, 2012, 73 (01) : 221 - 223
  • [37] Periodic orbits in the restricted four-body problem with two equal masses
    Jaime Burgos-García
    Joaquín Delgado
    Astrophysics and Space Science, 2013, 345 : 247 - 263
  • [38] Bifurcations of Central Configurations in the Four-Body Problem with Some Equal Masses
    Rusu, David
    Santoprete, Manuele
    SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2016, 15 (01): : 440 - 458
  • [39] Retrograde resonances at high mass ratio in the circular restricted 3-body problem
    Carita, G. A.
    Signor, A. C.
    Morais, M. H. M.
    de Carvalho, R. Egydio
    Prado, A. F. B. A.
    NONLINEAR DYNAMICS, 2023, 111 (18) : 17021 - 17035
  • [40] Periodic orbits in the restricted four-body problem with two equal masses
    Burgos-Garcia, Jaime
    Delgado, Joaquin
    ASTROPHYSICS AND SPACE SCIENCE, 2013, 345 (02) : 247 - 263