We consider the 3-body problem in 3-dimensional spaces of nonzero constant Gaussian curvature and study the relationship between the masses of the Lagrangian relative equilibria, which are orbits that form a rigidly rotating equilateral triangle at all times. There are three classes of Lagrangian relative equilibria in 3-dimensional spaces of constant nonzero curvature: positive elliptic and positive elliptic-elliptic, on 3-spheres, and negative elliptic, on hyperbolic 3-spheres. We prove that all these Lagrangian relative equilibria exist only for equal values of the masses. (C) 2014 AIP Publishing LLC.
机构:
Udmurt State Univ, Ul Univ Skaya 1, Izhevsk 426034, Russia
RAS, AA Blagonravov Mech Engn Res Inst, Ul Bardina 4, Moscow 117334, RussiaUdmurt State Univ, Ul Univ Skaya 1, Izhevsk 426034, Russia
Borisov, A. V.
Garcia-Naranjo, L. C.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Nacl Autonoma Mexico, Dept Matemat & Mecan IIMAS, Apdo Postal 20-726, Mexico City 01000, DF, MexicoUdmurt State Univ, Ul Univ Skaya 1, Izhevsk 426034, Russia
Garcia-Naranjo, L. C.
Mamaev, I. S.
论文数: 0引用数: 0
h-index: 0
机构:
RAS, Ural Branch, Inst Math & Mech, Ul S Kovalevskoi 16, Ekaterinburg 620990, Russia
Izhevsk State Tech Univ, Studencheskaya 7, Izhevsk 426069, RussiaUdmurt State Univ, Ul Univ Skaya 1, Izhevsk 426034, Russia
Mamaev, I. S.
Montaldi, J.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Manchester, Sch Math, Manchester M13 9PL, Lancs, EnglandUdmurt State Univ, Ul Univ Skaya 1, Izhevsk 426034, Russia