All the Lagrangian relative equilibria of the curved 3-body problem have equal masses

被引:13
|
作者
Diacu, Florin [1 ,2 ]
Popa, Sergiu [2 ]
机构
[1] Univ Victoria, Pacific Inst Math Sci, Victoria, BC V8W 2Y2, Canada
[2] Univ Victoria, Dept Math & Stat, Victoria, BC V8W 2Y2, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
N-BODY PROBLEM; POLYGONAL HOMOGRAPHIC ORBITS; CONSTANT CURVATURE; INTRINSIC APPROACH; SPACES; EXISTENCE; STABILITY;
D O I
10.1063/1.4900833
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider the 3-body problem in 3-dimensional spaces of nonzero constant Gaussian curvature and study the relationship between the masses of the Lagrangian relative equilibria, which are orbits that form a rigidly rotating equilateral triangle at all times. There are three classes of Lagrangian relative equilibria in 3-dimensional spaces of constant nonzero curvature: positive elliptic and positive elliptic-elliptic, on 3-spheres, and negative elliptic, on hyperbolic 3-spheres. We prove that all these Lagrangian relative equilibria exist only for equal values of the masses. (C) 2014 AIP Publishing LLC.
引用
收藏
页数:9
相关论文
共 50 条