All the Lagrangian relative equilibria of the curved 3-body problem have equal masses

被引:13
|
作者
Diacu, Florin [1 ,2 ]
Popa, Sergiu [2 ]
机构
[1] Univ Victoria, Pacific Inst Math Sci, Victoria, BC V8W 2Y2, Canada
[2] Univ Victoria, Dept Math & Stat, Victoria, BC V8W 2Y2, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
N-BODY PROBLEM; POLYGONAL HOMOGRAPHIC ORBITS; CONSTANT CURVATURE; INTRINSIC APPROACH; SPACES; EXISTENCE; STABILITY;
D O I
10.1063/1.4900833
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider the 3-body problem in 3-dimensional spaces of nonzero constant Gaussian curvature and study the relationship between the masses of the Lagrangian relative equilibria, which are orbits that form a rigidly rotating equilateral triangle at all times. There are three classes of Lagrangian relative equilibria in 3-dimensional spaces of constant nonzero curvature: positive elliptic and positive elliptic-elliptic, on 3-spheres, and negative elliptic, on hyperbolic 3-spheres. We prove that all these Lagrangian relative equilibria exist only for equal values of the masses. (C) 2014 AIP Publishing LLC.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Bifurcations of the Lagrangian orbits from the classical to the curved 3-body problem
    Diacu, Florin
    JOURNAL OF MATHEMATICAL PHYSICS, 2016, 57 (11)
  • [2] Relative Equilibria in Curved Restricted 4-body Problems
    Alhowaity, Sawsan
    Diacu, Florin
    Perez-Chavela, Ernesto
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2018, 61 (04): : 673 - 687
  • [3] EULERIAN RELATIVE EQUILIBRIA OF THE CURVED 3-BODY PROBLEMS IN S2
    Zhu, Shuqiang
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2014, 142 (08) : 2837 - 2848
  • [4] On the stability of tetrahedral relative equilibria in the positively curved 4-body problem
    Diacu, Florin
    Martinez, Regina
    Perez-Chavela, Ernesto
    Simo, Carles
    PHYSICA D-NONLINEAR PHENOMENA, 2013, 256 : 21 - 35
  • [5] The Integral Manifolds of the 4 Body Problem with Equal Masses: Bifurcations at Relative Equilibria
    McCord, Christopher K.
    JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, 2024,
  • [6] Hyperbolic relative equilibria for the negative curved n-body problem
    Perez-Chavela, Ernesto
    Manuel Sanchez-Cerritos, Juan
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2019, 67 : 460 - 479
  • [8] Relative equilibria for the positive curved n-body problem
    Perez-Chavela, Ernesto
    Sanchez-Cerritos, Juan Manuel
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2020, 82
  • [9] Lagrangian relative equilibria for a gyrostat in the three-body problem
    Vera Lopez, Juan Antonio
    CENTRAL EUROPEAN JOURNAL OF PHYSICS, 2009, 7 (04): : 677 - 689
  • [10] Stability of Euler-Type Relative Equilibria in the Curved Three Body Problem
    Perez-Chavela, Ernesto
    Sanchez Cerritos, Juan Manuel
    EXTENDED ABSTRACTS SPRING 2014: HAMILTONIAN SYSTEMS AND CELESTIAL MECHANICS; VIRUS DYNAMICS AND EVOLUTION, 2015, : 59 - 63