Nonlinear Dimensionality Reduction of Hyperspectral Data Using Spectral Correlation as a Similarity Measure

被引:0
作者
Myasnikov, Evgeny [1 ]
机构
[1] Samara Univ, 34 Moskovskoye Shosse, Samara 443086, Russia
来源
ANALYSIS OF IMAGES, SOCIAL NETWORKS AND TEXTS, AIST 2017 | 2018年 / 10716卷
基金
俄罗斯基础研究基金会;
关键词
Hyperspectral image; Spectral correlation Nonlinear dimensionality reduction; Nonlinear mapping Principal component analysis; IMAGERY;
D O I
10.1007/978-3-319-73013-4_22
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we propose a novel dimensionality reduction method, which is based on the principle of preserving the pairwise spectral correlation measures. For the proposed method, we introduce the corresponding quality measure, and derive the numerical optimization algorithm based on a stochastic gradient descent technique. We provide the results of the experimental study that compares the method to the principal component analysis method using well-known hyperspectral scenes. The results of the study show that the proposed method can be successfully applied to process hyperspectral images.
引用
收藏
页码:237 / 244
页数:8
相关论文
共 13 条
[1]   Exploiting manifold geometry in hyperspectral imagery [J].
Bachmann, CM ;
Ainsworth, TL ;
Fusina, RA .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2005, 43 (03) :441-454
[2]   Hyperspectral image processing using locally linear embedding [J].
Kim, DH ;
Finkel, LH .
1ST INTERNATIONAL IEEE EMBS CONFERENCE ON NEURAL ENGINEERING 2003, CONFERENCE PROCEEDINGS, 2003, :316-319
[3]   THE SPECTRAL IMAGE-PROCESSING SYSTEM (SIPS) - INTERACTIVE VISUALIZATION AND ANALYSIS OF IMAGING SPECTROMETER DATA [J].
KRUSE, FA ;
LEFKOFF, AB ;
BOARDMAN, JW ;
HEIDEBRECHT, KB ;
SHAPIRO, AT ;
BARLOON, PJ ;
GOETZ, AFH .
REMOTE SENSING OF ENVIRONMENT, 1993, 44 (2-3) :145-163
[4]   MULTIDIMENSIONAL-SCALING BY OPTIMIZING GOODNESS OF FIT TO A NONMETRIC HYPOTHESIS [J].
KRUSKAL, JB .
PSYCHOMETRIKA, 1964, 29 (01) :1-27
[5]   Curvilinear Component Analysis for nonlinear dimensionality reduction of hyperspectral images [J].
Lennon, M ;
Mercier, G ;
Mouchot, MC ;
Hubert-Moy, L .
IMAGE AND SIGNAL PROCESSING FOR REMOTE SENSING VII, 2002, 4541 :157-168
[6]   Nonlinear Mapping Methods with Adjustable Computational Complexity for Hyperspectral Image Analysis [J].
Myasnikov, E. V. .
EIGHTH INTERNATIONAL CONFERENCE ON MACHINE VISION (ICMV 2015), 2015, 9875
[7]   Nonlinear Mapping Based on Spectral Angle Preserving Principle for Hyperspectral Image Analysis [J].
Myasnikov, Evgeny .
COMPUTER ANALYSIS OF IMAGES AND PATTERNS: 17TH INTERNATIONAL CONFERENCE, CAIP 2017, PT II, 2017, 10425 :416-427
[8]   Evaluation of Stochastic Gradient Descent Methods for Nonlinear Mapping of Hyperspectral Data [J].
Myasnikov, Evgeny .
IMAGE ANALYSIS AND RECOGNITION (ICIAR 2016), 2016, 9730 :276-283
[9]   A new nonlinear dimensionality reduction method with application to hyperspectral image analysis [J].
Qian, Shen-En ;
Chen, Guangyi .
IGARSS: 2007 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, VOLS 1-12: SENSING AND UNDERSTANDING OUR PLANET, 2007, :270-273
[10]   A NONLINEAR MAPPING FOR DATA STRUCTURE ANALYSIS [J].
SAMMON, JW .
IEEE TRANSACTIONS ON COMPUTERS, 1969, C 18 (05) :401-&