Scalable fabrication of highly selective SSZ-13 membranes on 19-channel monolithic supports for efficient CO2 capture

被引:28
|
作者
Zhou, Junjing [1 ,2 ]
Wu, Shijie [1 ]
Liu, Bo [1 ]
Zhou, Rongfei [1 ]
Xing, Weihong [1 ]
机构
[1] Nanjing Tech Univ, Coll Chem Engn, State Key Lab Mat Oriented Chem Engn, Nanjing 210009, Peoples R China
[2] Nanjing Tech Univ, Coll Mech & Power Engn, Nanjing 210009, Peoples R China
基金
中国国家自然科学基金;
关键词
Monolithic membrane; SSZ-13; CO2; separation; Zeolites; capture; MOLECULAR-SIEVE MEMBRANES; CHA ZEOLITE MEMBRANES; ALPO-18; MEMBRANES; SAPO-34; CO2/CH4; SEPARATION; PERFORMANCE; N-2/CH4; GRAPHENE; AMBIENT;
D O I
10.1016/j.seppur.2022.121122
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Zeolite CHA (SSZ-13) membranes with record-high CO2/N-2 selectivities are reproducibly prepared on 19-channel monolithic supports by one-step secondary growth approach using the concentrated gel and vacuum seeding. Packing density and mechanical strength for the monolithic membranes are much higher than those for normal tubular and disc membranes. The membrane thickness in each channel of the monolithic support is quite uniform after synthesis modification. The best 19-channel monolith supported SSZ-13 membrane with an effective area of 85 cm2 shows high CO2/CH4 selectivity of 132 with CO2 permeance of 464 x 10-9 mol/(m(2) s Pa) at 298 K and pressure drop of 0.2 MPa for an equimolar CO2/CH4 mixture. The membrane also has the highest CO2/N2 selectivity of 46 among zeolite membranes to date. Large-area monolithic SSZ-13 membrane elements with an effective area of 270 cm2 are fabricated in the same way. It is larger than the surface area of industrial tubular supports. The large-area membrane still displays high CO2/CH4 and CO2/N-2 selectivities of 120 and 44 under the same test conditions, respectively, indicating that the current synthesis procedure is scalable. The effects of temperature and pressure drop on the separation performance of the monolithic membranes are investigated. The 19-channel monolithic SSZ-13 membrane with improved packing density is a good candidate for CO(2 )capture from natural gas and flue gas.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Preparation of steam-stable high-silica CHA (SSZ-13) membranes for CO2/CH4 and C2H4/C2H6 separation
    Zheng, Yihong
    Hu, Na
    Wang, Huamei
    Bu, Na
    Zhang, Fei
    Zhou, Rongfei
    JOURNAL OF MEMBRANE SCIENCE, 2015, 475 : 303 - 310
  • [22] Manipulating pore structures of SSZ-13 zeolite membranes via hydrocracking activation for superior H2/CO2 separation
    Chen, Weibo
    Ye, Feng
    Fan, Shuanshi
    Wang, Yanhong
    Lang, Xuemei
    Zhang, Zijian
    Li, Gang
    MICROPOROUS AND MESOPOROUS MATERIALS, 2025, 387
  • [23] Highly efficient, rapid and selective CO2 capture by thermally treated graphene nanosheets
    Chowdhury, Shamik
    Balasubramanian, Rajasekhar
    JOURNAL OF CO2 UTILIZATION, 2016, 13 : 50 - 60
  • [24] Supported deep eutectic liquid membranes with highly selective interaction sites for efficient CO2 separation
    Saeed, Usman
    Khan, Asim Laeeq
    Gilani, Mazhar Amjad
    Bilad, Muhammad Roil
    Khan, Asad Ullah
    JOURNAL OF MOLECULAR LIQUIDS, 2021, 342 (342)
  • [25] Membranes with Fast and Selective Gas-Transport Channels of Laminar Graphene Oxide for Efficient CO2 Capture
    Shen, Jie
    Liu, Gongping
    Huang, Kang
    Jin, Wanqin
    Lee, Kueir-Rarn
    Xu, Nanping
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2015, 54 (02) : 578 - 582
  • [26] Fabrication of conjugated microporous polytriazine nanotubes and nanospheres for highly selective CO2 capture
    Wang, Zhiqiang
    Liu, Junling
    Fu, Yu
    Liu, Cheng
    Pan, Chunyue
    Liu, Zhiyong
    Yu, Guipeng
    CHEMICAL COMMUNICATIONS, 2017, 53 (29) : 4128 - 4131
  • [27] Amine or Azo functionalized hypercrosslinked polymers for highly efficient CO2 capture and selective CO2 capture
    Qiao, Yuanting
    Zhan, Zhen
    Yang, Yuwan
    Liu, Manying
    Huang, Qi
    Tan, Bien
    Ke, Xuebin
    Wu, Chunfei
    MATERIALS TODAY COMMUNICATIONS, 2021, 27
  • [28] Fabrication of Si-CHA/SSZ-13 bilayer membrane for CO2/CH4 separation in wet conditions
    Aydani, Azam
    Maghsoudi, Hafez
    CHEMICAL PAPERS, 2022, 76 (08) : 4669 - 4678
  • [29] Highly concentrated multivariate ZIF-8 mixed-matrix hollow fiber membranes for CO2 separation: Scalable fabrication and process analysis
    An, Heseong
    Jung, Wonho
    Shin, Ju Ho
    Shin, Min Chang
    Park, Jung Hoon
    Lee, Jinwon
    Lee, Jong Suk
    JOURNAL OF MEMBRANE SCIENCE, 2023, 684
  • [30] Facile fabrication of cost-effective porous polymer networks for highly selective CO2 capture
    Sun, Lin-Bing
    Li, Ai-Guo
    Liu, Xiao-Dan
    Liu, Xiao-Qin
    Feng, Dawei
    Lu, Weigang
    Yuan, Daqiang
    Zhou, Hong-Cai
    JOURNAL OF MATERIALS CHEMISTRY A, 2015, 3 (07) : 3252 - 3256