Metal-Free 2D/2D Heterojunction of Graphitic Carbon Nitride/Graphdiyne for Improving the Hole Mobility of Graphitic Carbon Nitride

被引:292
作者
Han, Ying-Ying [1 ]
Lu, Xiu-Li [1 ]
Tang, Shang-Feng [1 ]
Yin, Xue-Peng [1 ]
Wei, Zhen-Wei [1 ]
Lu, Tong-Bu [1 ]
机构
[1] Tianjin Univ Technol, Inst New Energy Mat & Low Carbon Technol, Sch Mat Sci & Engn, Tianjin 300384, Peoples R China
关键词
graphdiyne; graphitic carbon nitride; hole transfer; photoelectrocatalysts; water splitting; PHOTOCATALYTIC HYDROGEN-PRODUCTION; VISIBLE-LIGHT; ARTIFICIAL PHOTOSYNTHESIS; H-2; EVOLUTION; WATER; GENERATION; NANOSHEETS; SEMICONDUCTORS; GRAPHDIYNE; CATALYSTS;
D O I
10.1002/aenm.201702992
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The design and synthesis of efficient metal-free photoelectrocatalysts for water splitting are of great significance, as nonmetal elements are generally earth abundant and environment friendly. As a typical metal-free semiconductor, g-C3N4 has received much attention in the field of photocatalytic water splitting. However, the poor photoinduced hole mobility of g-C3N4 restrains its catalytic performance. Herein, for the first time, graphdiyne (GDY) is used to interact with g-C3N4 to construct a metal-free 2D/2D heterojunction of g-C3N4/GDY as an efficient photoelectrocatalyst for water splitting. The g-C3N4/GDY photocathode exhibits enhanced photocarriers separation due to excellent hole transfer nature of graphdiyne and the structure of 2D/2D heterojunction of g-C3N4/GDY, realizing a sevenfold increase in electron life time (610 mu s) compared to that of g-C3N4 (88 mu s), and a threefold increase in photocurrent density (-98 mu A cm(-2)) compared to that of g-C3N4 photocathode (-32 mu A cm(-2)) at a potential of 0 V versus normal hydrogen electrode (NHE) in neutral aqueous solution. The photoelectrocatalytic performance can be further improved by fabricating Pt@ g-C3N4/GDY, which displays an photocurrent of -133 mu A cm(-2) at a potential of 0 V versus NHE in neutral aqueous solution. This work provides a new strategy for the design of efficient metal-free photoelectrocatalysts for water splitting.
引用
收藏
页数:8
相关论文
共 45 条
[1]   The Role of Cobalt Phosphate in Enhancing the Photocatalytic Activity of α-Fe2O3 toward Water Oxidation [J].
Barroso, Monica ;
Cowan, Alexander J. ;
Pendlebury, Stephanie R. ;
Graetzel, Michael ;
Klug, David R. ;
Durrant, James R. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2011, 133 (38) :14868-14871
[2]   Molecular co-catalyst accelerating hole transfer for enhanced photocatalytic H2 evolution [J].
Bi, Wentuan ;
Li, Xiaogang ;
Zhang, Lei ;
Jin, Tao ;
Zhang, Lidong ;
Zhang, Qun ;
Luo, Yi ;
Wu, Changzheng ;
Xie, Yi .
NATURE COMMUNICATIONS, 2015, 6
[3]   Atomic-Level Insight into Optimizing the Hydrogen Evolution Pathway over a Co1-N4 Single-Site Photocatalyst [J].
Cao, Yuanjie ;
Chen, Si ;
Luo, Qiquan ;
Yan, Huan ;
Lin, Yue ;
Liu, Wei ;
Cao, Linlin ;
Lu, Junling ;
Yang, Jinlong ;
Yao, Tao ;
Wei, Shiqiang .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2017, 56 (40) :12191-12196
[4]   Fast Photoelectron Transfer in (Cring)-C3N4 Plane Heterostructural Nanosheets for Overall Water Splitting [J].
Che, Wei ;
Cheng, Weiren ;
Yao, Tao ;
Tang, Fumin ;
Liu, Wei ;
Su, Hui ;
Huang, Yuanyuan ;
Liu, Qinghua ;
Liu, Jinkun ;
Hu, Fengchun ;
Pan, Zhiyun ;
Sun, Zhihu ;
Wei, Shiqiang .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2017, 139 (08) :3021-3026
[5]   Quantum-Dot-Sensitized TiO2 Inverse Opals for Photoelectrochemical Hydrogen Generation [J].
Cheng, Chuanwei ;
Karuturi, Siva Krishna ;
Liu, Lijun ;
Liu, Jinping ;
Li, Hongxing ;
Su, Liap Tat ;
Tok, Alfred Iing Yoong ;
Fan, Hong Jin .
SMALL, 2012, 8 (01) :37-42
[6]   A novel g-C3N4 based photocathode for photoelectrochemical hydrogen evolution [J].
Dong, Yuming ;
Chen, Yanmei ;
Jiang, Pingping ;
Wang, Guangli ;
Wu, Xiuming ;
Wu, Ruixian .
RSC ADVANCES, 2016, 6 (09) :7465-7473
[7]   Direct Synthesis of Graphdiyne Nanowalls on Arbitrary Substrates and Its Application for Photoelectrochemical Water Splitting Cell [J].
Gao, Xin ;
Li, Jian ;
Du, Ran ;
Zhou, Jingyuan ;
Huang, Mao-Yong ;
Liu, Rong ;
Li, Jie ;
Xie, Ziqian ;
Wu, Li-Zhu ;
Liu, Zhongfan ;
Zhang, Jin .
ADVANCED MATERIALS, 2017, 29 (09)
[8]   Powering the planet with solar fuel (vol 1, pg 7, 2009) [J].
Gray, Harry B. .
NATURE CHEMISTRY, 2009, 1 (01) :7-7
[9]   A Rapid Microwave-Assisted Thermolysis Route to Highly Crystalline Carbon Nitrides for Efficient Hydrogen Generation [J].
Guo, Yufei ;
Li, Jing ;
Yuan, Yupeng ;
Li, Lu ;
Zhang, Mingyi ;
Zhou, Chenyan ;
Lin, Zhiqun .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2016, 55 (47) :14693-14697
[10]   Atomically Thin Mesoporous Nanomesh of Graphitic C3N4 for High-Efficiency Photocatalytic Hydrogen Evolution [J].
Han, Qing ;
Wang, Bing ;
Gao, Jian ;
Cheng, Zhihua ;
Zhao, Yang ;
Zhang, Zhipan ;
Qu, Liangti .
ACS NANO, 2016, 10 (02) :2745-2751