Epileptic Seizure Detection Based on Partial Directed Coherence Analysis

被引:62
|
作者
Wang, Gang [1 ]
Sun, Zhongjiang [1 ]
Tao, Ran [1 ]
Li, Kuo [2 ]
Bao, Gang [2 ]
Yan, Xiangguo [1 ]
机构
[1] Xi An Jiao Tong Univ, Key Lab Biomed Informat Engn, Inst Biomed Engn, Minist Educ,Sch Life Sci & Technol, Xian 710049, Peoples R China
[2] Xi An Jiao Tong Univ, Dept Neurosurg, Affiliated Hosp 1, Xian 710061, Peoples R China
关键词
Cross validation; information flow; partial directed coherence (PDC); seizure detection; support vector machine (SVM); SIGNALS; SYSTEM; CLASSIFICATION; PREDICTION;
D O I
10.1109/JBHI.2015.2424074
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Long-term video EEG epilepsy monitoring can help doctors diagnose and cure epilepsy. The workload of doctors to read the EEG signals of epilepsy patients can be effectively reduced by automatic seizure detection. The application of partial directed coherence (PDC) analysis as mechanism for feature extraction in the scalp EEG recordings for seizure detection could reflect the physiological changes of brain activity before and after seizure onsets. In this study, a new approach on the basis of PDC was proposed to detect the seizure intervals of epilepsy patients. First of all, the multivariate autoregressive model was established for a moving window and the direction and intensity of information flow based on PDC analysis was calculated. Then, the outflow information related to certain EEG channel could be obtained by summing up the intensity of information flow propagated to other EEG channels in order to reduce the feature dimensionality. At last, according to the pathological features of epileptic seizures, the outflow information was regarded as the input vectors to a support vector machine classifier for discriminating interictal periods and ictal periods of EEG signals. The proposed method had achieved a good performance with the correct rate of 98.3%, the selectivity rate of 67.88%, the sensitivity rate of 91.44%, the specificity rate of 99.34%, and the average detection rate of 95.39%, which demonstrated that this method was suitable for detecting the seizure intervals of epilepsy patients. By comparing with other existing techniques, the proposed method based on PDC analysis achieved significant improvement in terms of seizure detection.
引用
收藏
页码:873 / 879
页数:7
相关论文
共 50 条
  • [1] Deep learning based epileptic seizure detection with EEG data
    Poorani, S.
    Balasubramanie, P.
    INTERNATIONAL JOURNAL OF SYSTEM ASSURANCE ENGINEERING AND MANAGEMENT, 2023,
  • [2] Epileptic Seizure Detection in Long-Term EEG Recordings by Using Wavelet-Based Directed Transfer Function
    Wang, Dong
    Ren, Doutian
    Li, Kuo
    Feng, Yiming
    Ma, Dan
    Yan, Xiangguo
    Wang, Gang
    IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2018, 65 (11) : 2591 - 2599
  • [3] Epileptic seizure detection based on imbalanced classification and wavelet packet transform
    Yuan, Qi
    Zhou, Weidong
    Zhang, Liren
    Zhang, Fan
    Xu, Fangzhou
    Leng, Yan
    Wei, Dongmei
    Chen, Meina
    SEIZURE-EUROPEAN JOURNAL OF EPILEPSY, 2017, 50 : 99 - 108
  • [4] EEG Sensor-Based Frequency Domain Analysis for Epileptic Seizure Detection
    Parikh, Abhishek
    Suthar, Anilkumar
    Gali, Manvitha
    Mahamkali, Aditya
    JOURNAL OF ELECTRICAL SYSTEMS, 2024, 20 (05) : 1033 - 1040
  • [5] Epileptic Seizure Detection Based on EEG Signals and CNN
    Zhou, Mengni
    Tian, Cheng
    Cao, Rui
    Wang, Bin
    Niu, Yan
    Hu, Ting
    Guo, Hao
    Xiang, Jie
    FRONTIERS IN NEUROINFORMATICS, 2018, 12
  • [6] Application of Machine Learning in Epileptic Seizure Detection
    Tran, Ly, V
    Tran, Hieu M.
    Le, Tuan M.
    Huynh, Tri T. M.
    Tran, Hung T.
    Dao, Son V. T.
    DIAGNOSTICS, 2022, 12 (11)
  • [7] Automatic epileptic seizure detection based on persistent homology
    Wang, Ziyu
    Liu, Feifei
    Shi, Shuhua
    Xia, Shengxiang
    Peng, Fulai
    Wang, Lin
    Ai, Sen
    Xu, Zheng
    FRONTIERS IN PHYSIOLOGY, 2023, 14
  • [8] Residual and bidirectional LSTM for epileptic seizure detection
    Zhao, Wei
    Wang, Wen-Feng
    Patnaik, Lalit Mohan
    Zhang, Bao-Can
    Weng, Su-Jun
    Xiao, Shi-Xiao
    Wei, De-Zhi
    Zhou, Hai-Feng
    FRONTIERS IN COMPUTATIONAL NEUROSCIENCE, 2024, 18
  • [9] EEG-Based Detection of Epileptic Seizures Through the Use of a Directed Transfer Function Method
    Wang, Gang
    Ren, Doutian
    Li, Kuo
    Wang, Dong
    Wang, Maode
    Yan, Xiangguo
    IEEE ACCESS, 2018, 6 : 47189 - 47198
  • [10] Enhanced Epileptic Seizure Detection Based on Information Fusion Techniques
    Pedram, Raha
    Farzanehkari, Pooyan
    Heydarloo, Milad Moradi
    Chaibakhsh, Ali
    Kordestani, Mojtaba
    Saif, Mehrdad
    INTELLIGENT SYSTEMS AND APPLICATIONS, VOL 2, INTELLISYS 2024, 2024, 1066 : 713 - 725