Facile synthesis of reduced graphene oxide-porous silicon composite as superior anode material for lithium-ion battery anodes

被引:65
作者
Jiao, Lian-Sheng [1 ,2 ,3 ]
Liu, Jin-Yu [3 ]
Li, Hong-Yan [1 ,2 ]
Wu, Tong-Shun [1 ]
Li, Fenghua [1 ]
Wang, Hao-Yu [1 ]
Niu, Li [1 ]
机构
[1] Chinese Acad Sci, Changchun Inst Appl Chem, Engn Lab Modern Analyt Tech, State Key Lab Electroanalyt Chem,CAS Ctr Excellen, Changchun 130022, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[3] Hebei Normal Univ Nationalities, Dept Chem, Chengde 067000, Peoples R China
关键词
Reduced graphene oxide; Porous silicon; Rice husks; High-rate; Anode; ELECTROCHEMICAL PERFORMANCE; NANOSILICON ELECTRODES; RICE HUSKS; NANOCOMPOSITES; STORAGE;
D O I
10.1016/j.jpowsour.2016.03.025
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We report a new method for synthesizing reduced graphene oxide (rGO)-porous silicon composite for lithium-ion battery anodes. Rice husks were used as a as a raw material source for the synthesis of porous Si through magnesiothermic reduction process. The as-obtained composite exhibits good rate and cycling performance taking advantage of the porous structure of silicon inheriting from rice husks and the outstanding characteristic of graphene. A considerably high delithiation capacity of 907 mA h g(-1) can be retained even at a rate of 16 A g(-1). A discharge capacity of 830 mA h g(-1) at a current density of 1 A g(-1) was delivered after 200 cycles. This may contribute to the further advancement of Si-based composite anode design. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:9 / 15
页数:7
相关论文
共 31 条
[1]   Chemical reduction of three-dimensional silica micro-assemblies into microporous silicon replicas [J].
Bao, Zhihao ;
Weatherspoon, Michael R. ;
Shian, Samuel ;
Cai, Ye ;
Graham, Phillip D. ;
Allan, Shawn M. ;
Ahmad, Gul ;
Dickerson, Matthew B. ;
Church, Benjamin C. ;
Kang, Zhitao ;
Abernathy, Harry W., III ;
Summers, Christopher J. ;
Liu, Meilin ;
Sandhage, Kenneth H. .
NATURE, 2007, 446 (7132) :172-175
[2]   Nanomaterials for rechargeable lithium batteries [J].
Bruce, Peter G. ;
Scrosati, Bruno ;
Tarascon, Jean-Marie .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2008, 47 (16) :2930-2946
[3]   Porous Si anode materials for lithium rechargeable batteries [J].
Cho, Jaephil .
JOURNAL OF MATERIALS CHEMISTRY, 2010, 20 (20) :4009-4014
[4]   Crystalline-Amorphous Core-Shell Silicon Nanowires for High Capacity and High Current Battery Electrodes [J].
Cui, Li-Feng ;
Ruffo, Riccardo ;
Chan, Candace K. ;
Peng, Hailin ;
Cui, Yi .
NANO LETTERS, 2009, 9 (01) :491-495
[5]   Effects of graphene and carbon coating modifications on electrochemical performance of silicon nanoparticle/graphene composite anode [J].
de Guzman, Rhet C. ;
Yang, Jinho ;
Cheng, Mark Ming-Cheng ;
Salley, Steven O. ;
Ng, K. Y. Simon .
JOURNAL OF POWER SOURCES, 2014, 246 :335-345
[6]   Nanosilicon-Coated Graphene Granules as Anodes for Li-Ion Batteries [J].
Evanoff, Kara ;
Magasinski, Alexandre ;
Yang, Junbing ;
Yushin, Gleb .
ADVANCED ENERGY MATERIALS, 2011, 1 (04) :495-498
[7]   Carbon scaffold structured silicon anodes for lithium-ion batteries [J].
Guo, Juchen ;
Chen, Xilin ;
Wang, Chunsheng .
JOURNAL OF MATERIALS CHEMISTRY, 2010, 20 (24) :5035-5040
[8]   Chemical vapor deposited silicon/graphite compound material as negative electrode for lithium-ion batteries [J].
Holzapfel, M ;
Buqa, H ;
Krumeich, F ;
Novák, P ;
Petrat, FM ;
Veit, C .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 2005, 8 (10) :A516-A520
[9]   Silicon-Carbon Nanotube Coaxial Sponge as Li-Ion Anodes with High Areal Capacity [J].
Hu, Liangbing ;
Wu, Hui ;
Gao, Yifan ;
Cao, Anyuan ;
Li, Hongbian ;
McDough, James ;
Xie, Xing ;
Zhou, Min ;
Cui, Yi .
ADVANCED ENERGY MATERIALS, 2011, 1 (04) :523-527
[10]   Recent developments in nanostructured anode materials for rechargeable lithium-ion batteries [J].
Ji, Liwen ;
Lin, Zhan ;
Alcoutlabi, Mataz ;
Zhang, Xiangwu .
ENERGY & ENVIRONMENTAL SCIENCE, 2011, 4 (08) :2682-2699