Orthogonal multiwavelets of multiplicity four

被引:4
作者
Hong, D [1 ]
Wu, AD
机构
[1] E Tennessee State Univ, Dept Math, Johnson City, TN 37614 USA
[2] Univ Petr, Dept Math, Shandong 257062, Peoples R China
关键词
wavelets; multiwavelets; approximation order; refinement equations; subdivision;
D O I
10.1016/S0898-1221(00)00229-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider solutions of a system of refinement equations with a 4 x 1 function vector and three nonzero 4 x 4 coefficient matrices. We give explicit expressions of coefficient matrices such that the refinement function vector and the corresponding wavelet vector have properties of short support [0, 2], symmetry or antisymmetry, and orthogonality. The properties of convergence of the subdivision scheme, approximation order, and smoothness of the refinement functions are also discussed. (C) 2000 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:1153 / 1169
页数:17
相关论文
共 13 条
[1]   A study of orthonormal multi-wavelets [J].
Chui, CK ;
Lian, JA .
APPLIED NUMERICAL MATHEMATICS, 1996, 20 (03) :273-298
[2]   Biorthogonal wavelet expansions [J].
Dahmen, W ;
Micchelli, CA .
CONSTRUCTIVE APPROXIMATION, 1997, 13 (03) :293-328
[3]   WAVELETS IN WANDERING SUBSPACES [J].
GOODMAN, TNT ;
LEE, SL ;
TANG, WS .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1993, 338 (02) :639-654
[4]   WAVELETS OF MULTIPLICITY-R [J].
GOODMAN, TNT ;
LEE, SL .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1994, 342 (01) :307-324
[5]   Approximation by translates of refinable functions [J].
Heil, C ;
Strang, G ;
Strela, V .
NUMERISCHE MATHEMATIK, 1996, 73 (01) :75-94
[6]  
Heil C., 1996, J FOURIER ANAL APPL, V2, P363
[7]   ON LINEAR INDEPENDENCE FOR INTEGER TRANSLATES OF A FINITE NUMBER OF FUNCTIONS [J].
JIA, RQ ;
MICCHELLI, CA .
PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 1993, 36 :69-85
[8]   Smoothness of multiple refinable functions and multiple wavelets [J].
Jia, RQ ;
Riemenschneider, SD ;
Zhou, DX .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 1999, 21 (01) :1-28
[9]   Vector subdivision schemes and multiple wavelets [J].
Jia, RQ ;
Riemenschneider, SD ;
Zhou, DX .
MATHEMATICS OF COMPUTATION, 1998, 67 (224) :1533-1563
[10]   On the regularity of matrix refinable functions [J].
Jiang, QT .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1998, 29 (05) :1157-1176