Existence results for Kirchhoff-type superlinear problems involving the fractional Laplacian

被引:40
作者
Zhang Binlin [1 ]
Radulescu, Vicentiu D. [2 ,3 ]
Wang, Li [4 ]
机构
[1] Heilongjiang Inst Technol, Dept Math, Harbin 150050, Heilongjiang, Peoples R China
[2] AGH Univ Sci & Technol, Fac Appl Math, Al Mickiewicza 30, PL-30059 Krakow, Poland
[3] Romanian Acad, Inst Math Simion Stoilow, POB 1-764, Bucharest 014700, Romania
[4] East China Jiaotong Univ, Coll Sci, Nanchang 330013, Jiangxi, Peoples R China
基金
中国国家自然科学基金; 黑龙江省自然科学基金;
关键词
Fractional Laplacian; Kirchhoff-type problem; critical groups; Morse theory; NONTRIVIAL SOLUTIONS; MULTIPLICITY;
D O I
10.1017/prm.2018.105
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the existence and multiplicity of solutions for Kirchhoff-type superlinear problems involving non-local integro-differential operators. As a particular case, we consider the following Kirchhoff-type fractional Laplace equation:.{M(integral integral(R2N) vertical bar u(x) -u(y)vertical bar(2)/vertical bar x-y vertical bar(N vertical bar 2s) dxdy) (-Delta)(s)u = f(x,u) in Omega, , where (-.)s is the fractional Laplace operator, s. (0, 1), N > 2s, O is an open bounded subset of RN with smooth boundary.O, M : R+ 0. R+ is a continuous function satisfying certain assumptions, and f(x, u) is superlinear at infinity. By computing the critical groups at zero and at infinity, we obtain the existence of non-trivial solutions for the above problem via Morse theory. To the best of our knowledge, our results are new in the study of Kirchhoff-type Laplacian problems.
引用
收藏
页码:1061 / 1081
页数:21
相关论文
共 50 条
[21]   On the superlinear problems involving the fractional Laplacian [J].
Bin Ge ;
Chao Zhang .
Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2016, 110 :343-355
[22]   Infinitely many solutions for Kirchhoff-type variable-order fractional Laplacian problems involving variable exponents [J].
Wang, Li ;
Zhang, Binlin .
APPLICABLE ANALYSIS, 2021, 100 (11) :2418-2435
[23]   Superlinear Schrodinger-Kirchhoff type problems involving the fractional p-Laplacian and critical exponent [J].
Xiang, Mingqi ;
Zhang, Binlin ;
Radulescu, Vicentiu D. .
ADVANCES IN NONLINEAR ANALYSIS, 2020, 9 (01) :690-709
[24]   Existence and non-existence results for Kirchhoff-type problems with convolution nonlinearity [J].
Chen, Sitong ;
Zhang, Binlin ;
Tang, Xianhua .
ADVANCES IN NONLINEAR ANALYSIS, 2020, 9 (01) :148-167
[25]   On Critical Schrödinger–Kirchhoff-Type Problems Involving the Fractional p-Laplacian with Potential Vanishing at Infinity [J].
Nguyen Van Thin ;
Mingqi Xiang ;
Binlin Zhang .
Mediterranean Journal of Mathematics, 2021, 18
[26]   Existence of solutions for a Kirchhoff type problem involving the fractional p-Laplacian operator [J].
Chen, Wenjing ;
Deng, Shengbing .
ELECTRONIC JOURNAL OF QUALITATIVE THEORY OF DIFFERENTIAL EQUATIONS, 2015, (87) :1-8
[27]   Multiplicity of solutions of Kirchhoff-type fractional Laplacian problems with critical and singular nonlinearities [J].
Duan, Qingwei ;
Guo, Lifeng ;
Zhang, Binlin .
ELECTRONIC JOURNAL OF QUALITATIVE THEORY OF DIFFERENTIAL EQUATIONS, 2023, (45) :1-28
[28]   Least energy nodal solutions for Kirchhoff-type Laplacian problems [J].
Cheng, Bitao ;
Chen, Jianhua ;
Zhang, Binlin .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2020, 43 (06) :3827-3849
[29]   Sign-changing solutions for Kirchhoff-type problems involving variable-order fractional Laplacian and critical exponents [J].
Liang, Sihua ;
Bisci, Giovanni Molica ;
Zhang, Binlin .
NONLINEAR ANALYSIS-MODELLING AND CONTROL, 2022, 27 (03) :556-575
[30]   Multiplicity results involving p-biharmonic Kirchhoff-type problems [J].
Alsaedi, Ramzi .
BOUNDARY VALUE PROBLEMS, 2020, 2020 (01)