Existence results for Kirchhoff-type superlinear problems involving the fractional Laplacian

被引:39
作者
Zhang Binlin [1 ]
Radulescu, Vicentiu D. [2 ,3 ]
Wang, Li [4 ]
机构
[1] Heilongjiang Inst Technol, Dept Math, Harbin 150050, Heilongjiang, Peoples R China
[2] AGH Univ Sci & Technol, Fac Appl Math, Al Mickiewicza 30, PL-30059 Krakow, Poland
[3] Romanian Acad, Inst Math Simion Stoilow, POB 1-764, Bucharest 014700, Romania
[4] East China Jiaotong Univ, Coll Sci, Nanchang 330013, Jiangxi, Peoples R China
基金
黑龙江省自然科学基金; 中国国家自然科学基金;
关键词
Fractional Laplacian; Kirchhoff-type problem; critical groups; Morse theory; NONTRIVIAL SOLUTIONS; MULTIPLICITY;
D O I
10.1017/prm.2018.105
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the existence and multiplicity of solutions for Kirchhoff-type superlinear problems involving non-local integro-differential operators. As a particular case, we consider the following Kirchhoff-type fractional Laplace equation:.{M(integral integral(R2N) vertical bar u(x) -u(y)vertical bar(2)/vertical bar x-y vertical bar(N vertical bar 2s) dxdy) (-Delta)(s)u = f(x,u) in Omega, , where (-.)s is the fractional Laplace operator, s. (0, 1), N > 2s, O is an open bounded subset of RN with smooth boundary.O, M : R+ 0. R+ is a continuous function satisfying certain assumptions, and f(x, u) is superlinear at infinity. By computing the critical groups at zero and at infinity, we obtain the existence of non-trivial solutions for the above problem via Morse theory. To the best of our knowledge, our results are new in the study of Kirchhoff-type Laplacian problems.
引用
收藏
页码:1061 / 1081
页数:21
相关论文
共 50 条
  • [21] On the superlinear problems involving the fractional Laplacian
    Bin Ge
    Chao Zhang
    Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2016, 110 : 343 - 355
  • [22] Infinitely many solutions for Kirchhoff-type variable-order fractional Laplacian problems involving variable exponents
    Wang, Li
    Zhang, Binlin
    APPLICABLE ANALYSIS, 2021, 100 (11) : 2418 - 2435
  • [23] Superlinear Schrodinger-Kirchhoff type problems involving the fractional p-Laplacian and critical exponent
    Xiang, Mingqi
    Zhang, Binlin
    Radulescu, Vicentiu D.
    ADVANCES IN NONLINEAR ANALYSIS, 2020, 9 (01) : 690 - 709
  • [24] Existence and non-existence results for Kirchhoff-type problems with convolution nonlinearity
    Chen, Sitong
    Zhang, Binlin
    Tang, Xianhua
    ADVANCES IN NONLINEAR ANALYSIS, 2020, 9 (01) : 148 - 167
  • [25] On Critical Schrödinger–Kirchhoff-Type Problems Involving the Fractional p-Laplacian with Potential Vanishing at Infinity
    Nguyen Van Thin
    Mingqi Xiang
    Binlin Zhang
    Mediterranean Journal of Mathematics, 2021, 18
  • [26] Existence of solutions for a Kirchhoff type problem involving the fractional p-Laplacian operator
    Chen, Wenjing
    Deng, Shengbing
    ELECTRONIC JOURNAL OF QUALITATIVE THEORY OF DIFFERENTIAL EQUATIONS, 2015, (87) : 1 - 8
  • [27] Least energy nodal solutions for Kirchhoff-type Laplacian problems
    Cheng, Bitao
    Chen, Jianhua
    Zhang, Binlin
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2020, 43 (06) : 3827 - 3849
  • [28] Sign-changing solutions for Kirchhoff-type problems involving variable-order fractional Laplacian and critical exponents
    Liang, Sihua
    Bisci, Giovanni Molica
    Zhang, Binlin
    NONLINEAR ANALYSIS-MODELLING AND CONTROL, 2022, 27 (03): : 556 - 575
  • [29] Multiplicity results involving p-biharmonic Kirchhoff-type problems
    Alsaedi, Ramzi
    BOUNDARY VALUE PROBLEMS, 2020, 2020 (01)
  • [30] Kirchhoff-type problems with the non-local fractional d(z,.)-Laplacian operator
    Yahiaoui, Ahlem
    Rezaoui, Med-Salem
    Djidel, Omar
    Guefaifia, Rafik
    Boulaaras, Salah
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2025, 2025 (01):